查看原文
其他

MIT机器人实验室主任:未来机器人的12项前沿技术趋势

2016-08-13 雷锋网


美国麻省理工学院(MIT)一直是机器人科技研究的先驱,这个实验室曾研究出猎豹、Atlas等轰动世界的军事机器人。那么,随着DeepMind AlphaGo、Atlas等前沿人工智能技术的发展,机器人领域的研究会出现哪些新的趋势呢?在CCF-GAIR全球人工智能与机器人峰会机器人专场上,MIT机器人实验室主任、IEEE、AAAI Fellow、美国国家工程院院士Daniela Rus就此作了报告演说,讲述世界机器人领域十二大前沿技术趋势:



| 机器人领域的“摩尔定律”


也许大家觉得这张图太未来主义,但事实上我们一定程度上已经实现了,机器人可以应用于送包裹、清理环境、货物整理、自动驾驶、生活辅助等场景。此外,我们也已经看到一些公司,他们已经发明了两种单臂协作的机器人,并应用于生产。


这些例子告诉我们的是,机器人确实已经从科幻转为当前的科学现实。我们能够让机器人更加有能力,更加的有智能。



值得一提的是,机器人领域也存在类似于“摩尔定律”这样的颠覆性规律。包括制造工具、设计工具等领域,互联网性能的颠覆速度每隔6年就会发生变化。同样,工厂机器人的数量也是每隔5年就会翻一番。目前,我们暂时已经验证了这一事实,而我相信未来这个颠覆的频率会更高。


未来这个世界,每个人都有可能拥有机器人,机器人就像是在路上跑的汽车一样常见,我把它称之为“泛在机器人”的世界。


这些机器人将能够与人类协作完成许多任务。当然,现在我们还没有到达这样的阶段,因为还有很多技术问题需要解决。比如机器人如何跟人互动,如何自我推理解决问题……以及,我们如何快速、低成本地制造新的机器人?


接下来,我跟大家分享一些技术的趋势,这些都能够帮助我们解决上述的问题。


| 十二大机器人技术趋势


  • 软体机器人



之前的机器人都是刚体的,但这样的结构并不能很好地适应各种环境。软体是指把机器人的结构制造得柔软灵活,像人体结构一样。一般来说,软体机器人的身体结构利用软硅胶制造的,增强其适应性,能够适应不同的未知环境。



基于肌肉运作的原理,我们发现这样的构造让机器人更加敏捷,能够更快速地完成某些特定任务。除了软硅胶,我们还可以用水或是空气去驱动软体的结构。比如这个(放大版)机器人,它外形像一条蛇,而表面这些泡泡可以通过放大和缩小的动作来驱动机器人的活动。


我们可以看到,把机器人放到管道当中时,它就可以自动去检测周围的环境,塑料型的适应性是刚体机器人不可比拟的。



同理,我们也可以去创造机器鱼。如图所示,它像实际的鱼一样可以活动,能够90度的转弯,可以快速地躲开捕猎者。全靠其软体尾部,机器鱼能够在水中上下游动。



我们已经看到了软性机体的重要性,一本新的期刊《软体机器人》期刊已经出来两年了。通过这本期刊我们知道,软体机器人在机器人学科当中的重要性排名最高,也就是说大家对软体机器人的关注度是最高的。


  •  Manipopulatetion :灵活操作


除了软体机器人,另外一个改善和提高机器人的技术是:灵活的抓取、搬运操作。



刚体的机器人只能够看清楚物体的大小,瞄准每一个指头放在哪里才能抓取物体,但人不是这么操作的。我们要拿一个东西时,伸手、抓取以非常连续的动作完成,不需要思考大小还是运用哪个手指。正因为要对手指头的位置的精准要求,让机器人抓起行为有了很大的局限性,它们没有办法应对不规则的物体。


而软性搬放就应运而生。因为不需要仔细地看这个物体放在哪个位置,也不会受到形状的控制。比如,它可以抓取鸡蛋、纸条。正因为这个机器人有非常柔性的结构,它可以自由地应对各种不确定因素。



我们还可以通过嵌入一些简单的传感器,来让机器人拥有辨别实际物体的能力。当然,目前还不能百分百做到,某些场景中的识别正确率偏低。横向或者是使用两个指头拿成功率会高些,因为横向抓取积累了更多的数据,知道怎么抓。


  • 语言交流


就算有软体结构,有的时候机器人也会失败。为什么呢?如果机器人抓不住,它可以告诉人出现什么问题,但它不能。


通过观察可以发现,机器人在执行一个任务时,人类一点点干预也会完全改变它的计划。如何提高人机协同互动性呢?如果机器人能过简单说一句“帮帮我,我卡住了”,这也能解决问题,但目前它还办不到。除此之外,如果机器人还可以自省,根据自己的数据计算出新的决策行动,从而避免这个故障。



因此我们希望赋予机器人这个能力。我们开发了一个程序规划系统,机器人可以通过这个规划系统思考自己的行动过程——卡住时可以想一想“为什么卡住,怎么样可以摆脱这个障碍”,或者把这个想法和人类沟通——“请把桌子搬起来”。


所以想象一下,机器人必须要有沟通能力,非常清晰明确地与外界沟通。否则,它只能说“帮帮我”的话,人类过来还得检查看一看它到底有什么问题,这样效率就很低了。


  • 云端大数据帮助学习



我们知道,机器人也需要学习。但是,我们人类从出生起每天可以接受大量的数据,从而进行学习,而对于机器人来说,数据储存就容易内存不足。一辆自动驾驶汽车一个小时就有1TB的数据,很难分析。所以,我们需要把抽象度提高,使得收集的数据能够达到较高阶的程度,降低储存压力和计算量。



举个例子,左边是一个GPS的数据流,如果对于这个GPS的数据流我们能够建立起有意义的结构,就能过从中归纳出一些能提取的信息,然后做高阶的推理。比如自动驾驶到了某一个位置,就知道要执行什么任务。


从数据流当中提取数据,进行抽象处理,并归纳出有意义的信息——这是接下来要分享的核心级技术——通过一个算法,在大数据当中分析一些小的数据集,这些小型数据集能够反映出整个数据运算结果。



同样一个例子:我们利用Coresete的方法,通过对视频的分析得出数据集数,然后把不同的色彩进行集中,从中可以用分析出更多更复杂的视频。电影画面里面16500帧,我们只需要用1152个Coresete数据点就可以展开分析。


  • 多机器人系统


只有一个机器人时,能够完成的任务有限,我们需要许多个机器人组成一个自动化系统。所以,第五个趋势就是多机器人系统。



当几个机器人组合到一起时,每个机器人都有各自负责的工作。当然了,假如现在在建一座小木屋,其中会有一个机器人负责搬零件,而另外的机器人会负责其他的工作。所以,我们可以看到这四个机器人在协作。


机器人必须要能够互相的交流、协调,才能够知道要在什么时候配合同伴执行任务。这是个挑战。它们需要了解自己的任务,又要知道整个集体任务的情况。


  • 按需制造



我们的目标是,让一个机器人可以通过3D打印机直接打印出来,但是这不是一般的外壳打印,在3D打印机当中要有驱动机制,我们可以看到里面的电子结构。这里其实是一个非常复杂的机制。


  • 大众化


让所有人都能够设计自己的机器人。这个想法很疯狂吗?有了数据库、编程工具、3D打印等技术的基础下,虽然不是说所有机器人都可以自动完成,但确实很多步骤是可以自动完成的。



而与此同时,机器人事实上具有非常广泛的用途,可以渗透到我们生活中的方方面面。比如,如果误吞了微型物体,我们可以做一个微型折叠机器人,将其送进肠道,让它通过折叠型来把异物包起来并从体内带出,从而帮助我们免去微创手术;又或者说,可以利用微型机器人来给人类提供胃部治疗。


  • 提早学习机器人



让学生提早开始进行机器人学习,用编程工具创造出各种各样的机器人。我们希望达到的目的是,用机器人的魔力吸引学生——不仅是机器人外壳,也需要学会编程等软能力。让学生儿童愉悦地进入机器人的世界,逐步投入到机器人行业当中。


  • 学术界与工业界的合作竞争


我们现在面对的是一个前所未有的计算机行业变革。我们需要有学术界有前瞻性或是异想天开的想法,也需要工业界的配合来把这些想法做成产品。与此同时,政府也应该参与其中,提出正确的执行方案,让机器人能够真正发挥作用。美国DARPA就是一个很好的案例。


一年前,丰田汽车找到麻省理工。该公司表示,驾驶是充满危险的,现在每年全世界因交通事故而丧生的人达到150万。通过产学合作,把学术的智慧运用在产业界的困难当中,这样才能更好地研发智能驾驶汽车。


  • 自动驾驶


麻省理工也在进行智能驾驶汽车的研发,于2010年中新加坡提出这样一个方案。智能驾驶与自动约车服务的结合,为城市提供自动汽车网络。



然而一般来说,我们只能在简单的环境当中驾驶,以真正驾驶环境中还有很多的障碍需要克服。


  • 商业投资和创业


现在这个世界也纷纷意识到了机器人领域的机遇。近年来,机器人领域发生了大规模的投资,2015年就有大约20亿美元规模的投资并购交易。


  • 中国的革新性


中国确确实实要在机器人方面引领变革。我在此提出一个愿景,未来的工厂会有更多的机器人跟工人并肩工作,未来机器人会比现在的更加先进。


事实上,我们需不需要担心机器人取代我们呢?事实上我们更应该担心的事,我们建造机器人的速度还不够快。在中国,到了2050年就只有20%的人仍处于工作年龄,所以更应该加速机器人的生产制造以弥补劳动力的短缺。


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存