推理加速 GPT-3 超越英伟达方案50%!开源方案打通大模型落地关键路径
• Serving:针对用户请求分散和变长的特点及大模型推理对GPU并行运算的依赖之间的矛盾,Energon-AI引入了动态Batching机制,将请求队列中的请求按照机器性能进行最优打包后,根据等候时间、batch大小、batch的扩展可能性(根据padding后的句子长度)等挑选优先级最高的batch处理,最大化GPU使用率的同时规避饥饿问题,减小平均请求时延。
性能测试
并行推理超线性扩展
运行时推理性能提升50%
Dynamic Batching 吞吐量增加30%
易用性
Python
from gpt import gpt3
from gpt_server import launch_engine
# for engine
model_class = gpt3
model_type = "gpt"
host = "127.0.0.1"
port = 29400
half = True
backend = "nccl"
# for parallel
tp_init_size = 4
pp_init_size = 2
# for server
engine_server = launch_engine
server_host = "127.0.0.1"
server_port = 8020
rm_padding = True
Python
energonai service init --config_file=gpt_config.py
在追求性能的同时,Energon-AI希望保持系统使用的灵活度与易用性,用户仅需自定义【并行模型】、【并行参数】以及【服务请求逻辑】加入到配置文件中,即可启动推理服务。目前,我们提供了最常见的GPT、BERT和ViT模型作为示例,更详尽的教程将会在近期完善。
在构建新的并行模型时,Energon-AI使用Python,且使用方式与Pytorch相似,有层的概念且初始化与执行逻辑清晰,用户无需考虑内存管理,并行通信等行为。如下代码展示了两层Linear层组成的模型并行运行的完整代码。
Python
class MLP(nn.Module):
def __init__(self, dim, dtype, bias):
super().__init__()
self.dense_0 = Linear1D_Col(dim, dim, dtype=dtype, bias=bias, gather_output=False)
self.dense_1 = Linear1D_Row(dim, dim, dtype=dtype, bias=bias, parallel_input=True)
def forward(self, x):
x = self.dense_0(x)
x = self.dense_1(x)
return x
与之相对,在构建新的并行模型时,FasterTransformer需要使用C++代码并且需要用户自行进行内存管理,定义通信等底层行为组织。受篇幅限制,如下代码展示两层Linear层模型并行运行的内存管理,具体执行,通信的部分代码。除此之外,用户想要代码正确执行,还需要花费大量时间精力对内存管理、执行逻辑、通信行为之间的配合进行调试,C++代码还需要额外编译工作。这些都对用户的并行知识与编程能力提出了严峻挑战。
C++
// Memory Allocation (only for a single paramerter).
T *d_inter_kernel = NULL
param_.ffn.intermediate_weight.kernel = d_inter_kernel;
device_malloc(&d_inter_kernel, dim * dim);
// Two MLP Layers
cublasMM_cublasLtMM_wrapper(param_.cublaslt_handle, param_.cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, &alpha, param_.ffn.intermediate_weight.kernel, AType_, n, attr_matmul_buf_, BType_, k, &beta, (DataType_ *)inter_matmul_buf_, CType_, n, param_.stream, cublasAlgoMap_, sm_, cublas_workspace_);
add_bias_act_kernelLauncher<DataType_>(inter_matmul_buf_, param_.ffn.intermediate_weight.bias, m, n, ActivationType::GELU, param_.stream);
n = k;
cublasMM_cublasLtMM_wrapper(param_.cublaslt_handle, param_.cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, &alpha, param_.ffn.output_weight.kernel, AType_, n, inter_matmul_buf_, BType_, k, &beta, (DataType_ *)(param_.transformer_out), CType_, n, param_.stream, cublasAlgoMap_, sm_, cublas_workspace_);
add_bias_input_layernorm_kernelLauncher<DataType_>(param_.transformer_out, attr_matmul_buf_, param_.ffn.output_weight.bias, param_.ffn_layernorm.gamma, param_.ffn_layernorm.beta, m, n, param_.stream);
// Communication
if(t_parallel_param_.world_size > 1)
{
all2all_gather(nccl_logits_buf_, nccl_logits_buf_, local_batch * n, t_parallel_param_, decoding_params.stream);
}
更多特性
本次发布的Energon-AI子系统为beta版,近期会根据用户反馈与既定计划,进行密集的迭代更新,尽早为用户提供正式版,充分满足用户的不同推理部署需求,欢迎向Energon-AI提出您的需求与建议。
构建AI大模型生态系统