查看原文
其他

2017诺贝尔化学奖丨冷冻电镜:让微观世界变得“高清”!在这个领域华人学者功不可没

2017-10-04 文汇报


据诺贝尔奖官网最新消息,2017年诺贝尔奖化学奖,颁给了雅克·杜波谢(Jacques Dubochet), 约阿希姆·弗兰克 (Joachim Frank) 和 理查德·亨德森(Richard Henderson),以表彰他们发展了冷冻电子显微镜技术,以很高的分辨率确定了溶液里的生物分子结构。



冷冻电镜是继X射线晶体学和核磁共振技术之后,又一结构生物学研究利器。2016年初,英国学术杂志《自然·方法》在年度最受关注技术榜单中将其放在首位。


他们究竟做了什么?让我们看看一段简短解读——


我们很有可能在近期内获得原子级别分辨率下的生命复杂机械的详细图像。今天有三位科学家获得了诺贝尔化学奖,他们对于冷冻电子显微镜技术的研究发展,同时简化和改进了生物分子的成像。正是这项技术,使得生物化学迈向了新的时代。

因为他们,我们能看到的微观世界从图片左侧这样,变成了右侧这样。

图像,是理解的关键。科学上的重大突破,其根源常常来自成功地创造出肉眼不可见物体的图像。然而在生物化学的领域里,现有技术难以实现生命体的大部分分子内在机械的可视化,所以留存了许多空白。

但是,冷冻电子显微镜改变了这一切,研究者现在可以冻结运动中的生物分子,看到以前从未见过的生物进程。这对进一步理解生命的基础化学过程以及发展相关医药领域都是决定性的。

长期以来,电子显微镜被认为只适用于死亡物质的成像,因为高强度的电子束会破坏生物材料。 但是在1990年,理查德·亨德森成功地使用电子显微镜得到了原子级分辨率的三维蛋白质图像。这一突破证明了这项技术的潜力。


约阿希姆·弗兰克使这项技术得以普遍应用。在1975到1986年间,他研发了一种图像处理方法,可以对电子显微镜下模糊的2D图像进行分析和合并,从而显示出一个清晰的三维结构。

雅克·杜波谢则在电子显微镜中加入了水。液态水会在电子显微镜的真空中气化,令生物分子坍塌。但20世纪80年代早期,杜波谢成功地使水玻璃化——他令水快速降温,在生物样本周围以液态形式固化使生物分子即使在真空中也能维持天然形态。 

在这些发现之后,电子显微镜的每个微小部件都被优化过了。2013年,电子显微镜终于达到了梦寐以求的原子级分辨率

现在,获得生物分子的三维结构已经是研究者们的日常。过去的几年科学文献充满了各种各样东西的图像,从造成抗生素耐药性的蛋白质到寨卡病毒的表面,不一而足。

生物化学正迎来一场爆发式的进展,我们已经准备好面对激动人心的未来。






让我们记住这三个名字,感谢他们为生物化学领域带来的革命:

雅克•杜波谢

1942年生于瑞士艾格勒。1973年获瑞士日内瓦大学及巴塞尔大学博士学位。现为瑞士洛桑大学生物物理学名誉教授。


约阿希姆•弗兰克

1940年生于德国锡根。1970年获德国慕尼黑技术大学博士学位。现为美国哥伦比亚大学的生物化学、分子生物物理学及生命科学教授。


理查德•亨德森

1945年生于苏格兰爱丁堡。1969年于英国剑桥大学获博士学位。现为英国剑桥大学的MRC分子生物学实验室项目负责人。

延伸阅读

华人学者在冷冻电镜领域的贡献

文 | 张凯(剑桥大学MRC分子生物学实验室博士) 


在冷冻电镜的这场技术革命中,华人科学家功不可没,在某些方面甚至独领风骚,做出了诸多重大成果。

 

加州大学旧金山分校(UCSF)的华人科学家程亦凡教授在2013年底,首次利用冷冻电镜技术解析近原子分辨率膜蛋白结构,这项成果在业界引起了巨大轰动。原因在于当所有电镜结构生物学家还在讨论膜蛋白到底能不能利用冷冻电镜技术看到二级结构,也是通常我们认为的中等分辨率水平的时候,程亦凡教授研究组直接解析了TRPV1 这个膜蛋白3.3埃近原子分辨率的结构(Nature,504:107–112)。


程亦凡


笔者曾在该文章发表的半年前在一次国际会议上和冷冻电镜领域顶级学者深入讨论过如何获得清晰的膜蛋白α-螺旋结构,对方给出了悲观的结论:“恐怕不太可能,至少最近两年不可能”。


事实上,此前蛋白质晶体学家已经有所耳闻“冷冻电镜可能在未来几年会超越并且取代晶体学”,但是谁也没想到会是以这样快速和震撼的方式登场,这在某种程度上引发了不少蛋白质晶体学家的“职业恐慌感”。这项成果的两个共同第一作者廖茂福、曹尔虎也都是非常杰出的青年华人科学家。

 

加州大学洛杉矶分校的周正洪教授早在2008年到2010年左右,在这场电镜技术革命来临之前,在各项技术条件尚未成熟的情况下解析了一系列近原子分辨率病毒结构。当时采用的是传统胶片来成像,任务非常艰巨,连他还在上学的儿子也都帮忙一起洗胶片。张兴博士在这一系列稍早的重要成果中充当了先锋。早在2008年,第一个近原子分辨率的冷冻结构,也即3.8埃轮状病毒就是张兴博士作为第一作者完成的(PNAS, 105(6): 1867-1872)。从1968年Aaron Klug创立电镜三维重构理论,到2008年人们首次看到通过冷冻电镜获得近原子分辨率结构,整整用了40年。

 

隋森芳院士


在国内,清华大学的隋森芳院士是我国冷冻电镜领域的先驱,不仅德高望重,还培养了一大批优秀的青年科学家,包括清华大学的王宏伟教授以及MRC-LMB的白晓晨和畅磊福博士等等。王宏伟早年在隋老师实验室做研究生的时候,在我国研究设备和条件全面落后于国外的情况下依旧做出了许多非常出色的工作。

 

MRC-LMB的多位青年华人研究人员对冷冻电镜发展都做出了重要贡献。白晓晨博士在MRC-LMB首次使用直接电子探测设备Falcon I和Sjors Scheres博士的新程序Relion,获得了第一个不对称样品核糖体的近原子分辨率冷冻电镜结构,打响了冷冻电镜革命的第一枪,随后解析了一系列核糖体和蛋白复合物结构。畅磊福博士在LMB首次获得非核糖体不对称蛋白样品APC复合物的近原子分辨率结构,阐明了蛋白质泛素化的重要机理。笔者主要在LMB的Andrew Carter博士实验室从事动力蛋白结构和功能研究,并成功解析动力蛋白激活因子Dynactin结构,提出了目前为止动力蛋白最详尽可靠的运动和激活机制(Science, 347(6229):1441-1446. 封面文章),同时独立发展冷冻电镜技术方法。

 

1953年4月25日,MRC沃森和克里克在《自然》杂志发表DNA双螺旋结构,61年后的同一天,我国科学家、中科院生物物理研究所的朱平和李国红研究员在《科学》杂志以长文形式发表了30nm染色质冷冻电镜结构(DNA双螺旋之双螺旋)(Science , 344(6182): 376-380)。这项工作是冷冻电镜在核心生命科学问题中的成功应用,冷冻电镜部分的工作主要是笔者在生物物理所的同学宋峰博士完成的。


生物物理所的程凌鹏博士(当前单位为清华大学)获得国内本土第一个原子分辨率的冷冻电镜结构,构建了蚕多角体病毒(CPV)的完整三维原子模型(PNAS,108(4):1373-1378)。笔者也参与了部分工作, 被其高质量、干净的电子密度图震撼。近期程凌鹏与刘红荣博士合作,在国际上首次发表了CPV完整基因组和RNA聚合酶“原位三维结构” (Science, 2015, 349(6254):1347-50), 引起了很大轰动,这项成果是我国本土冷冻电镜技术和生物学应用的双重突破,被多名同行科学家称赞为”里程牌式发现“。


我国著名科学家施一公最近发表了一系列重大蛋白复合物的冷冻电镜结构,包括γ-secretase、spliceosome等,被誉为过去几十年我国科学家对基础生物学领域的最大贡献。


另外,在欧美和中国本土还有一大批华人学者在冷冻电镜或密切相关领域(cryoET等)做出诸多突破性成果,例如匹兹堡大学的张佩君教授(艾滋病毒结构研究),德克萨斯大学的刘俊教授(细菌运动,噬菌体结构等研究)等。由


感谢他们为这个世界作出的贡献!


综合果壳网、知识分子


为你推荐

今日中秋丨送你这些最美的月亮,愿这月色温暖你回家的路

诺贝尔物理学奖揭晓!引力波众望所归

最新!IS“认领”美国史上最惨烈枪击案,嫌犯已身亡,目前50人死亡406人受伤



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存