查看原文
其他

一文读懂断点回归设计前提条件检验

断点回归由Thistlewaite and Campbell(1960)首次使用,但直到1990年代末才引起经济学家的重视。Thistlethwaite、Campbell于1960年首次提出使用断点回归设计研究处理效应, 在该文中他们的目的是研究奖学金对于未来学业的影响, 学生是否获得奖学金取决于考试的分数。此后30年, 该方法并未引起学术界的重视,直到1990年以后, 断点回归设计开始被应用于各种领域,并且近年来成为因果分析和政策评估领域最重要的研究方法。


Hahn et al(2001)提供了断点回归在计量经济学理论基础。目前,断点回归在教育经济学、劳动经济学、健康经济学、政治经济学以及区域经济学的应用仍方兴未艾。参见Imbens and Lemieux(2008),Van Der Klaauw(2008)以及Lee and Lemieux(2010)的文献综述。


在进行断点回归(RD)设计时,一般需要检验参考变量分布连续性检验/检验内生分组


这里检验内生分组,即主要检验配置变量,其实就是RD中个体是否将自行进入断点两侧,决定是否进入实验的,并是否存在某种跳跃性的变化。如果存在内生分组,个体将自行进入实验,导致在断点两侧的分布不均匀,这样分组变量x的密度函数f(x)在x=c处不连续,出现左右极限不相等的情况。


McCrary(2008)提出了一种核密度函数的检验方法(命令是DCdensity,介绍见下述操作),将参考变量划分成不同的区间并计算各区间中的个体数量,如果个体能够操纵参考变量,我们将能观测到断点左右个体数量有较大差别,比如很多个体通过操纵到了断点的右侧,那么,在断点右侧的区间中个体数量可能将大大超过断点左侧区间中个体的数量,利用带宽选择和曲线拟合方法, 可以检验在断点处c是否存在跳跃 。


McCrary(2008)可以通过非官方命令DCdensity来实现,其中DC表示Discontinuity,可以来检验分组变量的密度函数在断点处是否连续。 依此判断,是否存在内生分组问题。


该命令的下载地址为:https://eml.berkeley.edu/~jmccrary/DCdensity/ 


然后将该命令的DCdensity.ado下载安装或者复制到C:\ado\plus,Mac系统的需要自己sysdir查询外部命令安装路径,自行复制下载。命令语法格式为:


DCdensity assign_var,breakpoint(#) generate(Xj Yj r0 fhat se_fhat) graphname(filename) 


其中,assign_var 为分组变量,必选项breakpoint(#)用来指定断点位置,generate(Xj Yj r0 fhat se_fhat)用来指定输出变量名,graphname用来命名指定密度函数图。


操作应用如下:


本文使用断点回归命令rd所系统自带的数据进行演示,该案例考察美国国会选区如果有一名民主党众议员对该选区联邦指出的影响。 传统上,民主党倾向于大政府,故一个选区如果有民主党众议员,则该议员可能为该选区争取更多的联邦支出。然而,直接对二者进行回归可能存在遗漏变量问题或双向因果问题。为此,使用民主党候选人的得票率作为分组变量,以0.5作为断点(在两党政治中,得票率大于或等于0.5则当选,反之落选),进行断点回归。 数据集votex.dta,其中结果变量为lne(选区联邦开支的对数)、分组变量为d(民主党候选人得票率减去0.5)、处理变量win(民主党候选人当选),以及一系列协变量。


数据描述性分析结果如下:



检验分组变量的密度函数是否在断点处不连续。



可以看出断点两侧密度函数估计值的置信区间有很大部分重叠,所以断点两侧的密度函数不存在显著差异,检验结果为不存在内生分组,可以继续进行断点回归分析。


◆◆◆◆


精彩回顾


点击上图查看:

Stata寒假研讨班_2019年1月_第九季“高级计量经济学及stata应用”工作坊@北京专场_开始抢座啦



点击上图查看:

Stata寒假研讨班_第八季“高级计量经济学及stata应用”工作坊_2019年1月@上海_开始抢座啦

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存