其他
高维/多维面板固定效应模型:reghdfe
高维/多维面板固定效应模型:reghdfe
简介
reghdfe该命令吸收了面板线性回归多层次的固定效应,可以进行高维/多维面板固定效应模型估计。
reghdfe是areg(和xtreg,fe, xtivreg,fe)的一般化,用于多水平固定效应(包括异质斜率)、备选估计量(2sls, gmm2s, liml)和附加鲁棒标准误差。
reghdfe
命令可以包含多维固定效应模型,只需 absorb (var1,var2,var3,...)
,就可以进行多维固定效应模型估计。reghdfe
是一个外部命令,所以大家在使用之前需要安装(ssc install reghdfe或者help reghdfe或者findit reghdfe进行下载)。
语法格式为:
reghdfe depvar [indepvars] [if] [in] [weight] , absorb(absvars) [options]
选项含义为:
depvar 表示被解释变量
indepvars表示解释变量
absorb(absvars)表示将被吸收的固定效应,即加入个体或者时间固定效应
absorb(..., savefe)表示 保存所有带有__hdfe前缀的固定效果估算值
residuals(newvar)表示保存的残差
案例应用
1、导入数据
sysuse auto
2、进行单一维度固定效应模型估计
Simple case - one fixed effect
. reghdfe price weight length, absorb(rep78)
3、如上,但是加上聚类稳健标准误
. reghdfe price weight length, absorb(rep78) vce(cluster rep78)
4、下面进行二维三维固定效应模型估计
Two and three sets of fixed effects
webuse nlswork
# 二维面板固定效应模型估计
reghdfe ln_w grade age ttl_exp tenure not_smsa south , absorb(idcode year)
# 三维面板固定效应模型估计
reghdfe ln_w grade age ttl_exp tenure not_smsa south , absorb(idcode year occ)
结果为:
sysuse auto
(1978 Automobile Data)
.
. reghdfe price weight length, absorb(rep78)
(MWFE estimator converged in 1 iterations)
HDFE Linear regression Number of obs = 69
Absorbing 1 HDFE group F( 2, 62) = 22.98
Prob > F = 0.0000
R-squared = 0.4341
Adj R-squared = 0.3793
Within R-sq. = 0.4258
Root MSE = 2294.5106
------------------------------------------------------------------------------
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
weight | 5.478309 1.158582 4.73 0.000 3.162337 7.794281
length | -109.5065 39.26104 -2.79 0.007 -187.9882 -31.02482
_cons | 10154.62 4270.525 2.38 0.021 1617.96 18691.27
------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
rep78 | 5 0 5 |
-----------------------------------------------------+
. . reghdfe price weight length, absorb(rep78) vce(cluster rep78)
(MWFE estimator converged in 1 iterations)
HDFE Linear regression Number of obs = 69
Absorbing 1 HDFE group F( 2, 4) = 21.65
Statistics robust to heteroskedasticity Prob > F = 0.0072
R-squared = 0.4341
Adj R-squared = 0.3793
Within R-sq. = 0.4258
Number of clusters (rep78) = 5 Root MSE = 2294.5106
(Std. Err. adjusted for 5 clusters in rep78)
------------------------------------------------------------------------------
| Robust
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
weight | 5.478309 .8536918 6.42 0.003 3.108081 7.848538
length | -109.5065 25.31469 -4.33 0.012 -179.7914 -39.22167
_cons | 10154.62 4209.396 2.41 0.073 -1532.54 21841.77
------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
rep78 | 5 5 0 *|
-----------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation
use "nlswork.dta", clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. reghdfe ln_w grade age ttl_exp tenure not_smsa south , absorb(idcode year)
(dropped 550 singleton observations)
note: grade is probably collinear with the fixed effects (all partialled-out v
> alues are close to zero; tol = 1.0e-09)
(MWFE estimator converged in 8 iterations)
note: grade omitted because of collinearity
HDFE Linear regression Number of obs = 27,541
Absorbing 2 HDFE groups F( 5, 23375) = 261.99
Prob > F = 0.0000
R-squared = 0.6762
Adj R-squared = 0.6185
Within R-sq. = 0.0531
Root MSE = 0.2939
------------------------------------------------------------------------------
ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
grade | 0 (omitted)
age | .0114497 .0099824 1.15 0.251 -.0081165 .0310159
ttl_exp | .0323758 .0015046 21.52 0.000 .0294266 .035325
tenure | .0104689 .0009264 11.30 0.000 .0086531 .0122847
not_smsa | -.0914148 .0096386 -9.48 0.000 -.1103071 -.0725225
south | -.0640471 .0110539 -5.79 0.000 -.0857134 -.0423808
_cons | 1.161841 .290702 4.00 0.000 .5920463 1.731636
------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
idcode | 4147 0 4147 |
year | 15 1 14 |
-----------------------------------------------------+
. reghdfe ln_w grade age ttl_exp tenure not_smsa south , absorb(idcode year occ)
(dropped 544 singleton observations)
note: grade is probably collinear with the fixed effects (all partialled-out values ar
> e close to zero; tol = 1.0e-09)
(MWFE estimator converged in 15 iterations)
note: grade omitted because of collinearity
HDFE Linear regression Number of obs = 27,427
Absorbing 3 HDFE groups F( 5, 23255) = 243.90
Prob > F = 0.0000
R-squared = 0.6957
Adj R-squared = 0.6411
Within R-sq. = 0.0498
Root MSE = 0.2851
------------------------------------------------------------------------------
ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
grade | 0 (omitted)
age | .0072158 .009709 0.74 0.457 -.0118146 .0262461
ttl_exp | .0304072 .0014669 20.73 0.000 .027532 .0332824
tenure | .0096777 .000902 10.73 0.000 .0079098 .0114457
not_smsa | -.0937477 .0093765 -10.00 0.000 -.1121263 -.0753691
south | -.0597921 .0107538 -5.56 0.000 -.0808703 -.0387139
_cons | 1.298791 .2827473 4.59 0.000 .7445875 1.852994
------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
idcode | 4141 0 4141 |
year | 15 1 14 |
occ_code | 13 1 12 ?|
-----------------------------------------------------+
? = number of redundant parameters may be higher
.