查看原文
其他

Python 爬取 201865 条《隐秘的角落》弹幕,发现看剧不如爬山?

脚本之家 2021-06-30

The following article is from 凹凸数据 Author 朱小五555

  脚本之家

你与百万开发者在一起


本文经授权转载自 凹凸数据(ID:alltodata)
作者:朱小五
如若转载请联系原公众号

最近又火了一部国产剧:《隐秘的角落》。

如果你没看过,那可能会对朋友圈里大家说的“一起去爬山”、“小白船”、“还有机会吗”感到莫名其妙。

暑期推荐旅游(来源微博)

小五在这个端午假期也赶紧刷完了本剧,必须要写篇文章了。

由于《隐秘的角落》是在爱奇艺独播,所以数据从爱奇艺下手最直接。

如果没爬过爱奇艺,可以考虑使用豆瓣、微博、知乎(电视剧数据分析 · 万能三件套)的数据

01


爬虫


剧很精彩,但追剧界有句俗话说得好:“弹幕往往比剧更精彩”,为了让精彩延续下去,我终究没能忍住对弹幕下手。[1]

爱奇艺的弹幕数据是以 .z 形式的压缩文件存在的,先获取 tvid 列表,再根据 tvid 获取弹幕的压缩文件,最后对其进行解压及存储,大概就是这样一个过程。

这里参考了“数据兔小白[2]的代码,我又修改后实现分集爬取所有弹幕。

def get_data(tv_name,tv_id):
    url = 'https://cmts.iqiyi.com/bullet/{}/{}/{}_300_{}.z'
    datas = pd.DataFrame(columns=['uid','contentsId','contents','likeCount'])
    for i in range(1,20):
        myUrl = url.format(tv_id[-4:-2],tv_id[-2:],tv_id,i)
        print(myUrl)
        res = requests.get(myUrl)
        if res.status_code == 200:
            btArr = bytearray(res.content)
            xml=zlib.decompress(btArr).decode('utf-8')
            bs = BeautifulSoup(xml,"xml")
            data = pd.DataFrame(columns=['uid','contentsId','contents','likeCount'])
            data['uid'] = [i.text for i in bs.findAll('uid')]
            data['contentsId'] = [i.text for i in bs.findAll('contentId')]
            data['contents'] = [i.text for i in bs.findAll('content')]
            data['likeCount'] = [i.text for i in bs.findAll('likeCount')]
        else:
            break
        datas = pd.concat([datas,data],ignore_index = True)
    datas['tv_name']= str(tv_name)
    return datas

注:避免引起不必要的麻烦,本爬虫仅指出关键步骤,不再公开提供。

共爬取得到201865 条《隐秘的角落》弹幕数据。

02


弹幕发射器


按照用户id分组并对弹幕id计数,可以得到每位用户的累计发送弹幕数。

#累计发送弹幕数的用户
danmu_counts = df.groupby('uid')['contentsId'].count().sort_values(ascending = False).reset_index()
danmu_counts.columns = ['用户id','累计发送弹幕数']
danmu_counts.head()


累计发送弹幕数用户top5


第一名竟然发送了2561条弹幕,这只是一部12集的网剧啊。

难道他/她是水军?每条都发的差不多?
df_top1 = df[df['uid'] == 1810351987].sort_values(by="likeCount",ascending = False).reset_index()
df_top1.head(10)


然而并不是,每一条弹幕都是这位观众的有感而发,可能他/她只是在发弹幕的同时顺便看看剧吧。
这位“弹幕发射器”朋友,在每一集的弹幕量又是如何呢?
分集&平均弹幕量

是不是通过上图可以侧面说明个别剧集的戏剧冲突更大,更能引发观众吐槽呢?

“弹幕发射器”同志,11、12集请加大输出!


03


这些弹幕大家都认同


抛开“弹幕发射器”同志,我们继续探究一下分集的弹幕。

看看每一集当中,哪些弹幕大家都很认同(赞)?

df_like = df[df.groupby(['tv_name'])['likeCount'].rank(method="first", ascending=False)==1].reset_index()[['tv_name','contents','likeCount']]
df_like.columns = ['剧集','弹幕','赞']
df_like
每一集中点赞最多的弹幕

每一集的最佳弹幕都是当集剧情的浓缩,这些就是观众们票选出来的梗(吐槽)啊!

应该不算剧透吧,不算吧,不算吧

实在不行我请你去爬山也可

04


朝阳东升


除了剧本、音乐等,“老戏骨”和“小演员”们的演技也获得了网友的一致好评。

这部剧虽然短短12集,但故事线不仅仅在一两个人身上。每个人都有自己背后的故事,又因为种种巧合串联在一起,引发观众的持续性讨论。

我们统计一下演员们在弹幕中的出现次数,看看剧中的哪些角色大家提及最多。

a = {'张东升':'东升|秦昊|张老师', '朱朝阳':'朝阳', '严良':'严良', '普普':'普普', '朱永平':'朱永平', '周春红':'春红|大娘子', '王瑶':'王瑶', '徐静':'徐静|黄米依', '陈冠声':'王景春|老陈|陈冠声', '叶军':'叶军|皮卡皮卡', '马主任':'主任|老马', '朱晶晶':'晶晶','叶驰敏':'叶驰敏'}
a = {'张东升':'东升|秦昊|张老师''朱朝阳':'朝阳''严良':'严良''普普':'普普''朱永平':'朱永平''周春红':'春红|大娘子''王瑶':'王瑶''徐静':'徐静|黄米依''陈冠声':'王景春|老陈|陈冠声''叶军':'叶军|皮卡皮卡''马主任':'主任|老马''朱晶晶':'晶晶','叶驰敏':'叶驰敏'}
for key, value in a.items():
    df[key] = df['contents'].str.contains(value)
staff_count = pd.Series({key: df.loc[df[key], 'contentsId'].count() for key in a.keys()}).sort_values()

先计算出现次数,再利用pyecharts制作极坐标图。

弹幕中提到的主要演员

比较让我疑惑的三个小孩当中的朱朝阳提及量这么低,按理说应该与其其他两位大体相当啊。

又去源数据看了一遍,提及朱朝阳(朝阳)的弹幕确实很少,因为大部分在弹幕中观众一般就叫他“学霸”、“儿子”之类的了。


05


词云


总所周知,一篇数分文章不能少了词云。

每篇的词云都尽量跟上篇文章不同,这次我采用的是stylecloud,它算是wordcloud词云包的升级版,看起来美观多了。

import stylecloud
from IPython.display import Image 

stylecloud.gen_stylecloud(text=' '.join(text1), collocations=False,
                          font_path=r'‪C:\Windows\Fonts\msyh.ttc',
                          icon_name='fas fa-play-circle',size=400,
                          output_name='隐秘的角落-词云.png')
Image(filename='隐秘的角落-词云.png')
20万条弹幕词云

除了主角的名字以外,在这部以“孩子”为主题的剧中,对孩子的思想、行为的探讨占据重要部分,另外,剧中从年长的戏骨到年幼的孩子,每一个人都贡献了高光的演技,对他们演技的称赞也成为高频词汇。

而最出圈的“爬山”梗,更是被频频提及。

一起爬山吗?

从《无证之罪》到《隐秘的角落》,都在证明悬疑犯罪题材在当下并非没有市场,要收获高人气高口碑,如何传播与营销终归只是手段,越来越多的团队沉下心来打磨精品剧集,观众才会愿意为剧买单,让“爬山”这样的梗一步步“出圈”。

本文相关数据和可视化源码下载:

https://alltodata.cowtransfer.com/s/5b483c08987243

参考文章

  • [1]小z,数据不吹牛: 《Python 爬取 394452 条《都挺好》弹幕数据,发现弹幕比剧还精彩?》

  • [2]数据兔小白: 爬取爱奇艺弹幕后,我找到了共鸣

注:本文仅用于学习交流,禁止用于商业用途。

*文中图片均来自网络,如若侵权请联系删除


- END -



👇👇👇👇👇







今日书籍推荐
《Python数据科学实践》以Python语言为基础,介绍利用Python进行数据科学研究与商业分析的全貌。其核心的设计理念是通过经典的商业应用案例对数据爬取、数据存储、数据清洗、数据建模的核心Python模块做相应的介绍。

本书的特点是强调数据科学带来的商业价值理念,所以其可以作为高等学校数据科学、大数据管理与应用、统计或相关专业的教材,也适合从事数据分析的工作者和爱好者阅读。

《Python数据分析与大数据处理从入门到精通》主要讲解数据分析与大数据处理所需的技术、基础设施、核心概念、实施流程。从编程语言准备、数据采集与清洗、数据分析与可视化,到大型数据的分布式存储与分布式计算,贯穿了整个大数据项目开发流程。本书轻理论、重实践,目的是让读者快速上手。Git是一款让人一开始觉得很容易学,但却很难精通的工具。本书除了介绍Git的相关知识外,还会模拟各种常见的状况,让读者知道应该在什么时候使用什么指令。本书除了教大家如何在终端机视窗中输入Git指令,还搭配了图形界面工具,缓和了读者的学习曲线,让读者更容易上手。

  留言赠书参与方法 


分享一下你在学习或者使用Python、Git工具的经验感受,活动截止时获得点赞数最多的前2名获得以上书籍中的任1本,同时我们也将选择3名小锦鲤同样获得赠书1本

截止时间:2020 年 07 月 05 日 16:00 整




●  人人都欠微软一个正版?

●  积分兑换,来就“兑”了

●  Python 什么时候会被取代?

● 2020年开发者生态报告:Python超越Java

● 人生苦短,为什么我要用Python?

 2020年Python金融实战书单,我就选这几本

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存