查看原文
其他

聊聊 Jmeter 如何并发执行 Python 脚本

脚本之家 2023-01-25

The following article is from AirPython Author 星安果

 关注
“脚本之家
”,与百万开发者在一起

作者 | 星安果

出品 | AirPython(ID:AirPython)

1. 前言

大家好,我是安果!

最近有小伙伴后台给我留言,说自己用 Django 写了一个大文件上传的 Api 接口,现在想本地检验一下接口并发的稳定性,问我有没有好的方案

本篇文章以件上传为例,聊聊 Jmeter 并发执行 Python 脚本的完整流程

2. Python 实现文件上传

大文件上传包含 3 个步骤,分别是:

  • 获取文件信息及切片数目

  • 分段切片,并上传 - API

  • 文件合并 - API

  • 文件路径参数化

2-1  获取文件信息及切片数目

首先,获取文件的大小

然后,利用预设的切片大小获取分段总数

最后,获取文件名及 md5 值

import os
import math
import hashlib

def get_file_md5(self, file_path):
    """获取文件的md5值"""
    with open(file_path, 'rb'as f:
         data = f.read()
         return hashlib.md5(data).hexdigest()

def get_filename(self, filepath):
    """获取文件原始名称"""
    # 文件名带后缀
    filename_with_suffix = os.path.basename(filepath)
    # 文件名
    filename = filename_with_suffix.split('.')[0]
    # 后缀名
    suffix = filename_with_suffix.split('.')[-1]
    return filename_with_suffix, filename, suffix

def get_chunk_info(self, file_path):
    """获取分段信息"""
    # 获取文件总大小(字节)
    file_total_size = os.path.getsize(file_path)
    print(file_total_size)

    # 分段总数
    total_chunks_num = math.ceil(file_total_size / self.chunk_size)
    # 文件名(带后缀)
    filename = self.get_filename(file_path)[0]
    # 文件的md5值
    file_md5 = self.get_file_md5(file_path)
    return file_total_size, total_chunks_num, filename, file_md5

2-2  切片及分段上传

利用分段总数和分段大小,对文件进行切片,调用分段文件上传接口

import requests

def do_chunk_and_upload(self, file_path):
    """将文件分段处理,并上传"""
    file_total_size, total_chunks_num, filename, file_md5 = self.get_chunk_info(file_path)

    # 遍历
    for index in range(total_chunks_num):
        print('第{}次文件上传'.format(index + 1))
        if index + 1 == total_chunks_num:
            partSize = file_total_size % chunk_size
        else:
            partSize = chunk_size

        # 文件偏移量
        offset = index * chunk_size

        # 生成分片id,从1开始
        chunk_id = index + 1

        print('开始准备上传文件')
        print("分片id:", chunk_id, "文件偏移量:", offset, ",当前分片大小:", partSize, )

        # 分段上传文件
        self.__upload(offset, chunk_id, file_path, file_md5, filename, partSize, total_chunks_num)

def __upload(self, offset, chunk_id, file_path, file_md5, filename, partSize, total):
    """分次上传文件"""
    url = 'http://**/file/brust/upload'
    params = {'chunk': chunk_id,
                'fileMD5': file_md5,
                'fileName': filename,
                'partSize': partSize,
                'total': total
                }
    # 根据文件路径及偏移量,读取文件二进制数据
    current_file = open(file_path, 'rb')
    current_file.seek(offset)

    files = {'file': current_file.read(partSize)}
    resp = requests.post(url, params=params, files=files).text
    print(resp)

2-3  合并文件

最后调用合并文件的接口,将分段小文件合成大文件

def merge_file(self, filepath):
        """合并"""
        url = 'http://**/file/brust/merge'
        file_total_size, total_chunks_num, filename, file_md5 = self.get_chunk_info(filepath)
        payload = json.dumps(
            {
                "fileMD5": file_md5,
                "chunkTotal": total_chunks_num,
                "fileName": filename
            }
        )
        print(payload)
        headers = {
            "Content-Type""application/json"
        }
        resp = requests.post(url, headers=headers, data=payload).text
        print(resp)

2-4  文件路径参数化

为了并发执行,将文件上传路径参数化

# fileupload.py
...
if __name__ == '__main__':
    filepath = sys.argv[1]

    # 每一段切片的大小(MB)
    chunk_size = 2 * 1024 * 1024

    fileApi = FileApi(chunk_size)
    # 分段上传
    fileApi.do_chunk_and_upload(filepath)

    # 合并
    fileApi.merge_file(filepath)

3. Jmeter 并发执行

在使用 Jmeter 创建并发流程前,我们需要编写批处理脚本

其中,执行批处理脚本时,需要跟上文件路径一起执行

# cmd.bat

@echo off
set filepath=%1

python  C:\Users\xingag\Desktop\rpc_demo\fileupload.py %*

然后,在本地新建一个 CSV 文件,写入多个文件路径

# 准备多个文件路径(csv)
C:\\Users\\xingag\\Desktop\\charles-proxy-4.6.1-win64.msi
C:\\Users\\xingag\\Desktop\\V2.0.pdf
C:\\Users\\xingag\\Desktop\\HBuilder1.zip
C:\\Users\\xingag\\Desktop\\HBuilder2.zip

接着,就可以使用 Jmeter 创建并发流程了

完整步骤如下:

  • 创建一个测试计划,下面添加一个线程组

    这里线程组数目与上面文件数目保持一致即可

  • 线程组下,添加「 同步定时器 」

    同步定时器中的「 模拟用户组的数量 」和上面参数数量保持一致

  • 添加 CSV 数据文件设置

    指向上面准备的 csv 数据文件,设置文件格式为 UTF-8,变量名称设置为 file_path,最后将线程共享模式设置为「 当前线程组 」

  • 添加调试取样器,方便调试

  • 添加 OS 进程取样器

    选择上面创建的批处理文件,命令行参数设置为「 ${file_path} 」

  • 添加查看结果数

4. 最后

运行上面创建的 Jmeter 并发流程,在结果数中可以查看并发上传文件的结果

当然,我们可以增加并发数量去模拟真实的使用场景,只需要修改 CSV 数据源及 Jmeter 参数即可

  推荐阅读:

微软:VS Code是性能和体验最好的Python 代码编辑器

超硬核!11 个非常实用的 Python 和 Shell 拿来就用脚本实例!

Python 里最具代表性的符号,竟如此强大

用Python快速制作海报级地图

Python在计算内存时应该注意哪些问题?

每日打卡赢积分兑换书籍入口


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存