Android ART invoke 代码生成
前言
在前面 SandHook 系列我们知道 ArtMethod 入口替换并不能覆盖所有的方法,而且这个问题比预想的严重的多的多。
而导致 Hook 不到的原因不仅仅是 inline 优化,在 Android O 之前 Inline 只是小头,真正主要的原因是 Art Optimizing 代码生成的 Sharpening 优化。
Quick & Optimizing
ART 中的 Compiler 有两种
Quick
Optimizing
Quick 在 4.4 就引入,直到 6.0 一直作为默认 Compiler,直到 7.0 被移除。
Optimizing 5.0 引入,7.0 - 9.0 作为唯一 Compiler。
下面以 Optimizing Compiler为例分析 ART 方法调用的生成。
Optimizing
Optimizing 比 Quick 生成速度慢,但是会附带各种优化,包括:
逃逸分析:如果不能逃逸,则直接栈上分配
常量折叠
死代码块移除
方法内联
指令精简
指令重排序
load/store 精简
Intrinsic 函数替换
其中包括 Invoke 代码生成:
invoke-static/invoke-direct 代码生成默认使用 Sharpening 优化。
Sharpening
Sharpening 做了两件事情:
确定加载 ArtMethod 的方式和位置
确定直接 blr 入口调用方法还是查询 ArtMethod -> CodeEntry 调用方法
结果保存在 MethodLoadKind & CodePtrLocation 两个 enum 中。
MethodLoadKind 就是 ArtMethod 加载类型
CodePtrLocation 就是跳转地址的类型
我们重点关注 CodePtrLocation:
但是 CodePtrLocation 在 8.0 有重大变化:
8.0 之前
// Determines the location of the code pointer.
enum class CodePtrLocation {
// Recursive call, use local PC-relative call instruction.
kCallSelf,
// Use PC-relative call instruction patched at link time.
// Used for calls within an oat file, boot->boot or app->app.
kCallPCRelative,
// Call to a known target address, embed the direct address in code.
// Used for app->boot call with non-relocatable image and for JIT-compiled calls.
kCallDirect,
// Call to a target address that will be known at link time, embed the direct
// address in code. If the image is relocatable, emit .patch_oat entry.
// Used for app->boot calls with relocatable image and boot->boot calls, whether
// the image relocatable or not.
kCallDirectWithFixup,
// Use code pointer from the ArtMethod*.
// Used when we don't know the target code. This is also the last-resort-kind used when
// other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
kCallArtMethod,
};
kCallSelf 顾名思义,递归调用自己,此时不需要重新加载 ArtMethod,可以直接确定代码位置。
kCallPCRelative,直接 B 到下面的方法,多见于调用附近的方法。
kCallDirect ,可以直接知道编译完成的入口代码,则可以跳过 ArtMethod->CodeEntry 查询,直接 blx entry。多见于调用系统方法,这些方法中都是绝对地址,不需要重定向。
kCallDirectWithFixup,link OAT 文件的时候,才能确定方法在内存中的位置,方法入口需要 linker 重定向。也不需要查询 ArtMethod。
kCallArtMethod,此种需要在 Runtime 期间得知方法入口,需要查询 ArtMethod->CodeEntry。那么由此可见只有在此种情况下,入口替换的 Hook 才有可能生效。
代码生成:
void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
//处理 ArtMethod 加载位置
...........
//生成跳转代码
switch (invoke->GetCodePtrLocation()) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
__ Bl(&frame_entry_label_);
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
relative_call_patches_.emplace_back(invoke->GetTargetMethod());
vixl::Label* label = &relative_call_patches_.back().label;
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
__ Bind(label);
__ bl(0); // Branch and link to itself. This will be overriden at link time.
break;
}
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
// LR prepared above for better instruction scheduling.
DCHECK(direct_code_loaded);
// lr()
__ Blr(lr);
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
// LR = callee_method->entry_point_from_quick_compiled_code_;
__ Ldr(lr, MemOperand(
XRegisterFrom(callee_method),
ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value()));
// lr()
__ Blr(lr);
break;
}
}
可以看到只有 kCallArtMethod 才使用:
__ Ldr(lr, MemOperand(XRegisterFrom(callee_method),ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value()));
生成了从 ArtMethod 加载 CodeEntry 的代码:
ldr lr [RegMethod, #CodeEntryOffset]
其他情况都是直接 B CodeEntry。
8.0 之后
8.0 之后情况有所改观,说实话,从我的角度来说并没有感觉这项优化能带来多大的性能提升,所以 8.0 之后索性除了递归都先从 ArtMethod 里面找入口。
// Determines the location of the code pointer.
enum class CodePtrLocation {
// Recursive call, use local PC-relative call instruction.
kCallSelf,
// Use code pointer from the ArtMethod*.
// Used when we don't know the target code. This is also the last-resort-kind used when
// other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
kCallArtMethod,
};
代码生成:
switch (invoke->GetCodePtrLocation()) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
{
// Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
ExactAssemblyScope eas(GetVIXLAssembler(),
kInstructionSize,
CodeBufferCheckScope::kExactSize);
__ bl(&frame_entry_label_);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
// LR = callee_method->entry_point_from_quick_compiled_code_;
__ Ldr(lr, MemOperand(
XRegisterFrom(callee_method),
ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize).Int32Value()));
{
// Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
ExactAssemblyScope eas(GetVIXLAssembler(),
kInstructionSize,
CodeBufferCheckScope::kExactSize);
// lr()
__ blr(lr);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
break;
}
invoke-virtual/interface
invoke-virtual/interface 默认走另外一套:
{
// Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
// /* HeapReference<Class> */ temp = receiver->klass_
__ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
MaybeRecordImplicitNullCheck(invoke);
}
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
// temp = temp->GetMethodAt(method_offset);
__ Ldr(temp, MemOperand(temp, method_offset));
// lr = temp->GetEntryPoint();
__ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
{
// Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
// lr();
__ blr(lr);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
步骤如下:
Class clazz = receiver.getClass()
Method method = class.getMethodAt(Index);
Blr method->CodeEntry
InvokeRuntime
主要服务于需要在 Runtime 时期才能确定的 Invoke,例如类初始化 <cinit> 函数。(kQuickInitializeType)
InvokeRuntime 会从当前 Thread 中查找 CodeEntry:
void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(instruction, slow_path);
BlockPoolsScope block_pools(GetVIXLAssembler());
__ Ldr(lr, MemOperand(tr, entry_point_offset));
__ Blr(lr);
RecordPcInfo(instruction, dex_pc, slow_path);
}
tr 就是线程寄存器,一般 ARM64 是 X19。
所以代码出来一般长这样:
loc_3e6828:
mov x0, x19
ldr x20, [x0, #0x310]
blr x20
Intrinsics
ART 额外维护了一批系统函数的高效实现,这些高效实现利用了CPU的指令,直接跳过了方法调用。
// System.arraycopy.
case kIntrinsicSystemArrayCopyCharArray:
return Intrinsics::kSystemArrayCopyChar;
case kIntrinsicSystemArrayCopy:
return Intrinsics::kSystemArrayCopy;
// Thread.currentThread.
case kIntrinsicCurrentThread:
return Intrinsics::kThreadCurrentThread;
以 Thread.currentThread() 方法为例,此次调用在 intrinsics 的优化下变成了这段代码:
void IntrinsicCodeGeneratorARM64::VisitThreadCurrentThread(HInvoke* invoke) {
codegen_->Load(Primitive::kPrimNot, WRegisterFrom(invoke->GetLocations()->Out()),
MemOperand(tr, Thread::PeerOffset<8>().Int32Value()));
}
最后出来的代码类似这样,直接就把 Thread.nativePeer ldr 给目标寄存器,根本不是方法调用了:
结论
当 8.0 以上时,我们使用 ArtMethod 入口替换即可基本满足 Hook 需求。但如果 8.0 以下,如果不开启 debug 或者 deoptimize 的话,则必须使用 inline hook,否则会漏掉很多调用。
- End -
看雪ID:坑大
https://bbs.pediy.com/user-675677.htm
本文由看雪论坛 坑大 原创
转载请注明来自看雪社区
热门图书推荐:
征题正在火热进行中!
(晋级赛Q1即将于3月10日开启,敬请期待!)
热门文章阅读
公众号ID:ikanxue
官方微博:看雪安全
商务合作:wsc@kanxue.com