二维材料高次谐波及光波电子学
|作者:刘灿东 曾志男† 李儒新††
(中国科学院上海光学精密机械研究所)
本文选自《物理》2021年第11期
摘要 超短超强激光驱动固体介质产生高次谐波辐射受到了人们越来越多的关注。固体高次谐波产生于亚光周期电子运动,它提供了在极短时间尺度上研究光与固体材料高阶非线性相互作用的全新视角。与原子分子相比,组成固体材料的原子晶格具有平移对称性,因此固体高次谐波会呈现出特有的规律。相较于块体材料,二维材料独特的电光特性可以为高次谐波产生带来全新的特点,文章重点介绍几种二维材料高次谐波及其在光波电子学方面的研究进展。
关键词 强激光场,固体高次谐波,阿秒
引言
原子分子气体中的高次谐波(HHG)过程是获得阿秒级相干辐射的重要途径,为阿秒科学的建立与发展奠定了重要基础[1,2]。随着激光技术的进步,超短超强激光脉冲的波长范围已能够覆盖中红外甚至太赫兹波段,这极大地丰富了强场操纵的研究内容,为实现由简单原子分子到复杂固体材料的高次谐波产生提供契机[3]。相较于近红外激光,长波长光源与固体材料相互作用时会诱导不同能带之间的多光子跃迁过程,电子被激发时通常具有更小的光吸收截面,可以保证在材料不被电离损坏的情况下,允许更高强度的光电场在材料中激发出高度非平衡的电子运动,从而实现凝聚态体系中的高阶非线性光学现象。
2011年,S.Ghimire等人首次用波长3.2—3.7 μm可调谐的中红外激光驱动ZnO晶体,成功观测到了光子能量在ZnO带隙以上的高次谐波辐射[4],由此拉开了固体高次谐波研究的序幕。在此之后,人们相继在体半导体GaSe[5]和绝缘体MgO[6]与SiO2[7]、低温固相稀有气体Ar和Kr[8]、单层二维材料MoS2[9]和石墨烯[10],以及拓扑绝缘体BiSbTeSe2[11]等各种不同的固体材料中都观察到了高次谐波辐射,所使用的驱动光波长涵盖了从中外红到太赫兹波段很宽的范围。固体高次谐波作为非线性频率上转换过程,是一种重要的次级辐射源,有望为发展全新紧凑型极紫外光源[7]和高效的太赫兹波段合成器[12]提供思路。利用材料工程学的手段,人们还可以设计出亚波长的超表面微纳结构,更好地控制纳米尺度上的强场相互作用过程,实现高次谐波产生效率的极大提高[13]。
固体高次谐波的理论研究也伴随着实验内容的进步而在不断地发展和深入,固体晶格结构的周期性和内部电子的多体强关联特性对理解高次谐波的底层物理机制提出了挑战。为了揭示固体高次谐波的主要特征和简化光与物质相互作用的物理过程,人们通常采用单电子近似图像,在倒格矢空间中分析微观电流来理解高次谐波过程[14,15]。激光场驱动固体材料产生的电流有两个来源:其中与能带色散密切相关的称为带内电流,描述了电子在某个能带上的布洛赫运动情况;另一个与电子受激跃迁后引起的不同能带之间的极化有关,称为带间电流。带内电流激发的谐波起源于能带色散的频谱分量,通常对光子能量低于能带带隙的谐波产生起主要作用,而带间电流激发的谐波与能带之间的光学跃迁矩阵元有关,主要贡献了能量高于带隙的光谱级次。类比于原子分子高次谐波产生的三步模型,如果对带间电流激发的高次谐波谱进行鞍点分析,那么可以看出带间谐波发射还能用电子—空穴碰撞图像来描述[16]。带内谐波和带间谐波代表了两种不同的产生机制,直接导致它们对驱动光的波长[16]和椭偏度[17,18]有不同的依赖关系。固体高次谐波的单电子图像也为其在光谱测量学上的应用奠定了基础,通过探测不同激发条件下的高次谐波谱和借助一些最优化拟合算法,人们成功地实现了固体能带色散的全光重建[19]和贝利曲率的测量[20]。
晶体除了具有一般的平移对称性和特定的能带结构外,还拥有与原子分子类似的诸如旋转、反演和反射等点群对称性,它们与激光场时域波形相结合形成的联合时空对称性强烈地影响了固体高次谐波的特征[21—23]。这些对称性能够使固体高次谐波具有可控的偏振态[24]以及独特的时域和光谱特性[25],并能够引起谐波波形的载波包络相位翻转[26]。当线偏振光激发固体时,一系列的选择定则将会对平行和垂直于驱动光电场方向上的谐波分量产生影响,线偏振光相对于晶格的不同取向会产生偏振分辨的奇偶次谐波谱的各种调制现象。在实验和理论上,人们经常研究这两个正交方向的高次谐波谱,它们的调制行为深刻地反映了体系对称性的情况,有助于加深对高次谐波的微观物理过程的理解。与原子分子不同,固体复杂的晶格能带结构还会导致驱动光椭偏度对高次谐波的影响展现出多样性,例如:ZnO高次谐波的椭偏度依赖虽然呈现高斯型变化[17,27],但是没有原子分子高次谐波对椭偏度依赖得那么敏感;在单层石墨烯[10]和MgO[6]中,某些级次的谐波产率在特定椭偏率的椭圆偏振光下还会得到增强。这些结果表明固体谐波的椭偏度依赖携带了与能带色散和电子运动轨道有关的一些重要信息。
迄今为止,有多种不同的理论方法可以用来定量地计算固体高次谐波谱,包括半经典布洛赫振荡方程[28,29]、基于布洛赫—布洛赫[30,31]表象或者万尼尔—布洛赫[32]表象的含时薛定谔方程、半导体布洛赫密度矩阵方程[33—36],以及从头计算的含时密度泛函方程[37]等。这些方法都能针对具体的问题,解释固体高次谐波实验中观测到的一些现象。其中,半导体布洛赫方程得到了较广泛的应用,因为它结构简单计算量适中,可以方便地分析带内和带间谐波发射机制,同时能够引入真实材料的能带结构,并唯象地考虑失相弛豫过程。半导体布洛赫方程在长度或者速度规范下,还可以用静态布洛赫本征态、Houston态,或者原子轨道万尼尔态[38]为基矢表达成多种不同的形式,它们各具特点,能应用到不同的场合。
二维材料高次谐波的奇异特性
二维材料是一类新兴的材料,厚度在单原子层到几个原子层厚度。二维材料最为典型的代表是石墨烯,仅具有一个原子厚度,约0.34 nm。二维材料具有不同于普通材料的奇异性质,这源于其超薄的厚度引起的量子限域效应,如石墨烯中在K 点附近的无质量狄拉克电子,具有超高的载流子迁移率;单层WS2为直接带隙半导体,具有超大激子束缚能,以及谷旋光特性;单层TaS2具有超导性;单层NbTe2表现为金属性;少层Bi2Se3为拓扑绝缘体;单层BN为绝缘体等等。这些奇异的性质使得二维材料成为物理学、化学和材料科学研究的热点,有望解决常规半导体面临的短沟道效应,使得晶体管尺寸进一步缩小。
强激光场与凝聚态材料的相互作用,不仅在于高次谐波的产生,而且在于电子运动的超快操控,以及实现下一代PHz光电子器件的可能性。在强激光场与二维材料的相互作用中,同样表现出很多奇异的性质(图1)。在石墨烯中,因为石墨烯的零带隙特征,观测到高次谐波的产生效率通过椭圆偏振光激发而增强,这为研究无质量狄拉克费米子的强场和超快动力学以及非线性行为提供了可能性(图1(b))[10]。在MoS2中,观测到单层MoS2相比于体材料的显著增强,以及贝利曲率带来的物理效应(图1(a))[9],这意味着二维材料中强大的多体库仑相互作用与可调的电子特性相结合,为阿秒物理学提供了新的平台。在WS2单层晶体中,强电场驱动的光波电子学提供了赝谷自旋的操控能力(图1(c)),这意味着在基本量子水平快速操控电子的方法,为光频水平的谷电子学打开了大门[39]。但是,事实上有关固体HHG的潜在机制仍在争论中,一个能够考虑固体多样性的统一理论仍然难以捉摸,尤其是尚不清楚电子相关性在多大程度上影响谐波产生,比如偶次谐波的产生到底来自贝利曲率还是对称性破坏尚在争论中。以单层MoS2为例,其晶格结构不具备空间反演对称,能带在布里渊区K点上出现非零的直接带隙。由于贝利曲率引起的反常电流效应占主导,实验测量MoS2中产生的偶次谐波主要垂直于驱动光极化方向[9],通过分析偶次谐波对样品和激光参数的依赖,可以得到重构贝利曲率的分布。我们则发展了全新的MoS2高次谐波理论模型,用于计算单层MoS2材料中偏振分辨的高次谐波谱[40]。计算发现,尽管平行和垂直方向上偶次谐波的调制周期相等,但是两者之间存在30°的相移。理论分析表明,多能带耦合干涉效应导致平行偶次谐波的产生,而动量矩阵元沿着两个正交方向上相位差的反演对称性破缺决定了垂直偶次谐波的产生。
图1 (a)中红外激光与单层MoS2相互作用产生的高次谐波[9];(b)中红外激光与石墨烯相互作用产生的高次谐波[10];(c)太赫兹脉冲与单层WS2相互作用产生的高次谐波,插图是用于驱动的太赫兹脉冲电场[39]
石墨烯高次谐波
作为典型的二维材料,石墨烯高次谐波在理论和实验上都得到了研究,尤其是理论上进行了深入的讨论,包括最近很热门的扭转石墨烯。单层石墨烯具有宽带宽、弱屏蔽、超快光学响应、高损伤阈值等特性,是研究强场激光驱动和控制超快电流的理想材料,它的非线性光学响应过程已经被广泛地研究[41—44]。最近,人们在实验上成功地测量到了单层石墨烯的高次谐波谱,并且发现谐波产率在特定椭偏度的驱动光下会得到增强。单层石墨烯完全由碳原子组成,所有碳原子在二维平面上排列成正六边形蜂巢结构,如图2(a)所示,图中A和B代表了两类不等价的子晶格,
图2 (a)石墨烯的六方晶格结构由两类不同的子晶格组成,分别标记为 A 和 B。a1 和 a2为晶格矢量;(b)倒易空间中的第一布里渊区,K 和 K′为两个不相等的狄拉克点;(c)5 次(黑实线,HH5)、7 次(红虚线,HH7)和 9 次(蓝点线,HH9)谐波的产率与椭偏度的依赖关系。每个级次的谐波产率都按照各自在线偏振光时的产率值进行了归一化[45]
Tamaya等认为固体中HHG的机理分为三种状态(图3):(1)多光子吸收状态;(2)交流Zener状态和(3)半金属状态[33]。谐波特征取决于拉比频率ΩR0与带隙Eg之比,在半金属状态下(Eg/2ℏ≤ΩR0),谐波辐射的产量在一定的有限泵浦椭圆率下达到最大值,相对于激光主轴的垂直偏振分量会得到显著增强。因为石墨烯是无间隙材料(Eg=0),所以即使在弱场激励下也可以实现半金属状态(Eg/2ℏ≤ΩR0。应该注意的是,在HHG中起着重要作用的不是线性能带色散,而是石墨烯的零间隙特性,即便是抛物带结构,在计算中也会出现独特的椭偏度依赖性。我们的理论研究则发现失相时间T2是影响石墨烯高次谐波的一个很重要的参数(图2(c))[45],T2的变化会导致石墨烯高次谐波的椭偏度依赖发生改变。在不同的T2下,7次谐波产率最大位置对应的椭偏度不同,因此恰当地选择激光—石墨烯相互作用的失相时间是重现实验结果的关键。此外,我们还确定了石墨烯高次谐波的椭偏依赖主要由带间谐波发射所决定,展现了各向同性的特征,受石墨烯晶格取向影响很小。进一步,我们通过人为地改变狄拉克点附近光学跃迁矩阵元的函数值,证明了光学跃迁矩阵元在狄拉克点的奇异性和涡旋矢量结构是产生这个特定椭偏度依赖的原因。这些结果表明了石墨烯中椭偏驱动的高次谐波信号携带了有关失相时间和电子结构的重要信息。
图3 取决于驱动激光电场强度的高次谐波产生的不同机制示意图 (a)多光子吸收机制;(b)交流 Zener 机制;(c)半金属机制。红线和蓝线显示了基于外部电场而发生和未发生改变的能带色散,绿线显示布洛赫电子的激发过程[33]
如果进一步将两层石墨烯按照任意取向堆叠在一起可以形成扭转双层石墨烯(twisted bilayer graphene,tBLG),上下两层原子之间的晶格失配具有额外的自由度操纵电子结构特征,从而使得tBLG拥有独特的能带结构并展现出很多重要的物理现象,例如:圆偏振光电流效应[46]、二维高阶拓扑绝缘体[47]和魔角超导性[48]。以前有关tBLG的研究主要集中在费米面附近的低能区域,而在强激光场下的非线性电子动力学过程还未见深入报道。tBLG具有与单层材料不一样的点群对称性、超晶格平移对称性和层间的范德瓦耳斯力等,这些特点都能有效地调控光与材料的强场相互作用过程,从而为这类材料的高次谐波辐射带来全新的特点。
我们采用速度规范的刘维尔—冯·诺依曼方程描述tBLG与激光场的相互作用[49],这样会有较好的数值稳定性,同时允许在计算HtBLG的本征矢时选择任意的相位。选取中心波长4700 nm和脉冲宽90 fs的线偏振中红外脉冲作为驱动光,计算表明驱动激光强度能够决定与激光电场平行和垂直两个方向上高次谐波分量的相对大小。不同扭转角θ 的tBLG的调制曲线存在一个θ/2的相移,这个特征起源于tBLG中每一单层石墨烯产生的高次谐波之间的干涉效应。在不考虑失相的情况下,tBLG的高次谐波发射效率在10º扭转角时会出现明显的下降,该结果可以按照小扭转角时的多能带耦合和大扭转角时的费米速度修正这两种机制之间的竞争来定性理解。因此,tBLG产生的高次谐波能够成为一种重要的光谱学手段,用于确定tBLG几何堆叠扭转角、相邻层间的电子相互作用以及强场激光引起的超快失相过程。
强激光场驱动的光波电子学
强激光场驱动的光波电子学在气体高次谐波和阿秒科学的研究中就已经有过大量研究[1]。光波电子学通过强激光电场控制电子的亚周期运动,可实现PHz量级的电子响应速度,不仅奠定了阿秒科学的基础,还有望发展为高速电子器件。固体高次谐波的产生,强激光场与半导体材料、纳米结构的相互作用更是为这种发展奠定了基础,一系列具有里程碑意义的工作集中在光脉冲影响材料特性的速度和机制问题上,下面以单层石墨烯和WSe2为例做一个简单的介绍。
如图4所示,原子级厚度的半金属石墨烯与块状碳化硅偶联形成了肖特基结,电荷转移时间快于300±200 as。这意味着电荷传输速率的截止带宽为3.3 PHz,这种半金属/半导体接口代表了一种功能性的固态接口,为未来高速光波信号处理提供了可行性。对于未来的太赫兹电子学,这相当于一种无源功能性电子器件,也有助于理解复杂生物分子和分子混合物中量子相干增强的光收集。具有阿秒电荷转移时间的系统组合已经包括光发射到真空和小分子内的电荷转移。
图5 单层 WSe2中的高奇阶边带生成 (a)WSe2单层的晶体结构;(b)六边形布里渊区,在不等价的 K 和 K′ 点处具有自旋分裂价和导带边缘。太赫兹脉冲控制电子运动,从而控制赝谷自旋[39]
如图5所示,光波驱动的带内传输可以在几飞秒内改变过渡金属二维材料单层中的谷赝自旋。通过相位稳定的强太赫兹波形来加速单层二硒化钨(WSe2)中光激发的相干电子—空穴对,在某个谷中选择性创建的电子—空穴对可以通过强大的太赫兹场部分转移到相对的谷中,强太赫兹脉冲可以驱动电子传输足够远以引起K 和K′ 态的叠加,并最终翻转谷赝自旋。通过控制太赫兹波形和注入时间可以实现复杂的传输协议,为最终实现高速谷电子学器件铺平道路。
未来展望与挑战
自2010年中红外激光驱动ZnO晶体产生高次谐波的实验工作被报道以来,在这十多年的时间里,固体高次谐波领域逐渐成为强场和阿秒科学的研究前沿。固体高次谐波作为一种极端非线性的频率上转换过程,可以用于构建便捷紧凑的短波长光源。虽然固体谐波的产生效率比原子分子情况要高,但是获得的波长范围受到固体能带结构和损伤光强的限制。为了让固体高次谐波能成为一种理想的极紫外光源,可以借助带隙大的绝缘体类材料作为产生介质,并尽量使用强度更高的近红外激光作为驱动源。另外,掺杂也是一种有效的能带调控手段,对固体材料的不同掺杂可以改变其原有的能带结构,有望为固体高次谐波光源提供更多的控制维度。
固体高次谐波还是一种重要的光谱学手段,它包含了光电场与固体相互作用的丰富信息。目前,固体高次谐波已经成功用于重建材料的能带和贝利曲率等信息,重建过程所采用的理论模型都是基于单电子近似图像。然而,固体材料中存在重要的电子关联效应,飞秒时间尺度内的非平衡多体相互作用会对高次谐波产生重要影响,有关这方面的研究还报道不多。因此,发展包含电子多体效应的高次谐波模型,以突破当前广泛采用的单电子图像,便成为固体高次谐波研究领域的一个重要任务,可以为未来探测激子、拓扑和自旋轨道耦合等重要的物理效应奠定理论基础。
凝聚态系统中由强场驱动的电流为PHz电子学打开了新的领域。但是由于能带结构和相干电子—空穴动力学的作用尚未解决,因此出现了新的挑战。比如,在如此激烈、超快的过程中,能带结构的作用是什么?相干电子—空穴动力学在极短的时间尺度内如何演化,从而导致激子的形成,或电子—电子—声子如何相互作用?亚周期电流控制及PHz电子学如何发展?这些问题构成了固体中强场相互作用的新兴领域中的一些主要挑战。强激光场作用下的超快光波电子学,在当前材料科学取得巨大飞跃的时代,大大提高了二维材料应用前景,并呈现了可以像乐高积木一样以受控方式组织材料于应用的技术,如过渡金属二硫属化物中准粒子碰撞、对带隙存在的控制和对狄拉克载流子通路干扰的控制。通过使用高次谐波产生光谱揭示的阿秒动力学可以了解多能带固态系统中载波的时间演化,且动态成像偶次谐波将能够以极高的时间分辨率和几伏每微米的灵敏度记录正在运行的半导体和硅光子器件以及近纳米结构中的电场动态影像。
[1] Krausz F,Ivanov M. Rev. Mod. Phys.,2009,81:163
[2] Calegari F,Sansone G,Stagira S et al. J. Phys. B:At. Mol. Opt. Phys.,2016,49:062001
[3] Ghimire S,Reis D A. Nat. Phys.,2009,15:10
[4] Ghimire S,DiChiara A D,Sistrunk E et al. Nat. Phys.,2011,7:138
[5] Kaneshima K,Shinohara Y,Takeuchi K et al. Phys. Rev. Lett.,2018,120:243903
[6] You Y S,Reis D A,Ghimire S. Nat. Phys.,2017,13:345
[7] Luu T T,Garg M,Kruchinin S Y et al. Nature,2015,521:498
[8] Ndabashimiye G,Ghimire S,Wu M et al. Nature,2016,534:520
[9] Liu H,Li Y,You Y S et al. Nat. Phys.,2016,13:262
[10] Yoshikawa N,Tamaya T,Tanaka K. Science,2017,356:736
[11] Bai Y,Fei F,Wang S et al. Nat. Phys.,2021,17:311
[12] Hafez H A,Kovalev S,Deinert J C et al. Nature,2018,561:507
[13] Liu H,Guo C,Vampa G et al. Nat. Phys.,2018,14:1006
[14] McDonald C R,Vampa G,Corkum P B et al. Phys. Rev. A,2015,92:033845
[15] Vampa G,McDonald C R,Orlando G et al. Phys. Rev. B,2015,91:064302
[16] Vampa G,McDonald C R,Orlando G et al. Phys. Rev. Lett.,2014,113:073901
[17] Liu C,Zheng Y,Zeng Z et al. Phys. Rev. A,2016,93:043806
[18] Dejean N,Mücke O,Kärtner F et al. Nat. Commun.,2017,8:745
[19] Vampa G,Hammond T,Thiré N et al. Phys. Rev. Lett.,2015,115:193603
[20] Luu T,Wörner H. Nat. Commun.,2018,9:916
[21] Neufeld O,Podolsky D,Cohen O et al. Nat. Commun.,2019,10:405
[22] Moiseyev N. Phys. Rev. A,2015,91:053811
[23] Saito N,Xia P,Lu F et al. Optica,2017,4:1333
[24] Klemke N et al. Nat. Commun.,2019,10:1319
[25] Wu M,You Y,Ghimire S et al. Phys. Rev. A,2017,96:063412
[26] Langer M,Hohenleutner U,Huttner S et al. Nat. Photon.,2017,11:227
[27] Hollinger R,Herrmann P,Korolev V et al. Nanomaterials,2020,11:4
[28] Feise M W,Citrina D S. Appl. Phys. Lett.,1999,75:3536
[29] Ghimire S,DiChiara A D,Sistrunk E et al. Phys. Rev. A,2012,85:043836
[30] Wu M,Ghimire S,Reis D A et al. Phys. Rev. A,2015,91:043839
[31] Hawkins P G,Ivanov M Y,Yakovlev V S. Phys. Rev. A,2015,91:013405
[32] Osika E N,Chacón A,Ortmann L et al. Phys. Rev. X,2017,7:021017
[33] Tamaya T,Ishikawa A,Ogawa T et al. Phys. Rev. Lett.,2016,116:016601
[34] Wismer M S,Kruchinin S Y,Ciappina M et al. Phys. Rev. Lett.,2016,116:197401
[35] Luu T T,Wörner H J. Phys. Rev. B,2016,94:115164
[36] Floss I,Lemell C,Wachter G et al. Phys. Rev. A,2018,97:011401(R)
[37] Dejean N,Mücke O D,Kärtner F X et al. Phys. Rev. Lett.,2017,118:087403
[38] Silva R E F,Martín F,Ivanov M. Phys. Rev. B,2019,100:195201
[39] Langer F,Schmid C P,Schlauderer S et al. Nature,2018,557:76
[40] Ikeda T N. Phys. Rev. Res.,2020,2:032015(R)
[41] Dejean N,Mücke O,Kärtner F et al. Nat. Commun.,2017,8:745
[42] Mikhailov S A. Europhys. Lett.,2017,79:27002
[43] Ishikawa K L. Phys. Rev. B,2010,82:201402(R)
[44] Chizhova L A,Libisch F,Burgdörfer J. Phys. Rev. B,2016,94:075412
[45] Liu C,Zheng Y,Zeng Z et al. Phys. Rev. A,2018,97:063412
[46] Gao Y,Zhang Y,Xiao D. Phys. Rev. Lett.,2020,124:077401
[47] Park M J,Kim Y,Cho G Y et al. Phys. Rev. Lett.,2019,123:216803
[48] Cao Y,Fatemi V,Demir A et al. Nature (London),2018,556:80
[49] Du M,Liu C,Zeng Z et al. Phys. Rev. A,2021,104:033113
[50] Heide C,Hauck M,Higuchi T et al. Nat. Photonics,2020,14:219
阿秒科学与技术专题:
《物理》在淘宝店和微店上线,扫码即可购买过刊和现刊。
2.“朗道势垒”究竟有多高? | 谈书说人之六3.直觉—— 一种特别的物理学思维4.日冕的难解之谜5.轻柔扭转DNA6.电调控磁拓扑的实现7.从物联网时代的高熵能源到迈向碳中和的蓝色大能源——接触起电的物理机理与摩擦纳米发电机的科学构架8.爱因斯坦靠什么拿到的博士学位?