面试官:缓存一致性问题怎么解决
The following article is from 艾小仙 Author 艾小仙
(给ImportNew加星标,提高Java技能)
转自:艾小仙
关于 Redis 的其他的一些面试问题已经写过了,比如常见的缓存穿透、雪崩、击穿、热点的问题,但是还有一个比较麻烦的问题就是如何保证缓存一致性。
对于缓存和数据库的操作,主要有以下两种方式。
先删缓存,再更新数据库
先删除缓存,数据库还没有更新成功,此时如果读取缓存,缓存不存在,去数据库中读取到的是旧值,缓存不一致发生。
解决方案
延时双删
延时双删的方案的思路是,为了避免更新数据库的时候,其他线程从缓存中读取不到数据,就在更新完数据库之后,再 Sleep 一段时间,然后再次删除缓存。
Sleep 的时间要对业务读写缓存的时间做出评估,Sleep 时间大于读写缓存的时间即可。
流程如下:
线程1删除缓存,然后去更新数据库。 线程2来读缓存,发现缓存已经被删除,所以直接从数据库中读取,这时候由于线程1还没有更新完成,所以读到的是旧值,然后把旧值写入缓存。 线程1,根据估算的时间,Sleep,由于 Sleep 的时间大于线程2读数据+写缓存的时间,所以缓存被再次删除。 如果还有其他线程来读取缓存的话,就会再次从数据库中读取到最新值。
先更新数据库,再删除缓存
如果反过来操作,先更新数据库,再删除缓存呢?
这个就更明显的问题了,更新数据库成功,如果删除缓存失败或者还没有来得及删除,那么,其他线程从缓存中读取到的就是旧值,还是会发生不一致。
解决方案
消息队列
这是网上很多文章里都有写过的方案。但是这个方案的缺陷会更明显一点。
先更新数据库,成功后往消息队列发消息,消费到消息后再删除缓存,借助消息队列的重试机制来实现,达到最终一致性的效果。
这个解决方案其实问题更多。
引入消息中间件之后,问题更复杂了,怎么保证消息不丢失更麻烦。 就算更新数据库和删除缓存都没有发生问题,消息的延迟也会带来短暂的不一致性,不过这个延迟相对来说还是可以接受的。
进阶版消息队列
为了解决缓存一致性的问题单独引入一个消息队列,太复杂了。
其实,一般大公司本身都会有监听 binlog 消息的消息队列存在,主要是为了做一些核对的工作。
这样,我们可以借助监听 binlog 的消息队列来做删除缓存的操作。这样做的好处是,不用你自己引入,侵入到你的业务代码中,中间件帮你做了解耦,同时,中间件的这个东西本身就保证了高可用。
当然,这样消息延迟的问题依然存在,但是相比单纯引入消息队列的做法更好一点。
而且,如果并发不是特别高的话,这种做法的实时性和一致性都还算可以接受的。
其他解决方案
设置缓存过期时间
每次放入缓存的时候,设置一个过期时间,比如5分钟,以后的操作只修改数据库,不操作缓存,等待缓存超时后从数据库重新读取。
如果对于一致性要求不是很高的情况,可以采用这种方案。
这个方案还会有另外一个问题,就是如果数据更新的特别频繁,不一致性的问题就很大了。
在实际生产中,我们有一些活动的缓存数据是使用这种方式处理的。
因为活动并不频繁发生改变,而且对于活动来说,短暂的不一致性并不会有什么大的问题。
为什么是删除,而不是更新缓存?
我们以先更新数据库,再删除缓存来举例。
如果是更新的话,那就是先更新数据库,再更新缓存。
举个例子:如果数据库 1 小时内更新了 1000 次,那么缓存也要更新 1000 次,但是这个缓存可能在1小时内只被读取了 1 次,那么这 1000 次的更新有必要吗?
反过来,如果是删除的话,就算数据库更新了 1000 次,那么也只是做了 1 次缓存删除,只有当缓存真正被读取的时候才去数据库加载。
总结
首先,我们要明确一点,缓存不是更新,而应该是删除。
删除缓存有两种方式:
先删除缓存,再更新数据库。解决方案是使用延迟双删。 先更新数据库,再删除缓存。解决方案是消息队列或者其他 binlog 同步,引入消息队列会带来更多的问题,并不推荐直接使用。
针对缓存一致性要求不是很高的场景,那么只通过设置超时时间就可以了。
其实,如果不是很高的并发,无论你选择先删缓存还是后删缓存的方式,都几乎很少能产生这种问题,但是在高并发下,你应该知道怎么解决问题。
看完本文有收获?请转发分享给更多人
关注「ImportNew」,提升Java技能
好文章,我在看❤️