光催化CO₂还原:基础知识(一)
随着人口和工业化程度的快速增长,全球能源供应急剧增加。据估计,截止到2021年全球能源消耗总量约为600 EJ (1018 J),其中超过80%的能源供应来自于化石燃料[1]。而化石燃料的使用会引起严重的CO₂排放。
最新统计数据表明,大气中的CO₂含量从工业革命前的280 ppm上升到2020年的416 ppm(图1)[2]。CO₂的过量排放会带来全球变暖、冰川融化、生物多样性丧失等一系列问题[3,4]。因此,CO₂的转化利用已经迫在眉睫。
01
迄今为止,已经发展了多种技术可将CO₂转化为碳氢化合物或高附加值化学品,主要包括热催化[5,6]、生物催化[7]、光电催化[8,9]、电催化[10,11]和光催化还原[12-14]等。
传统热催化还原CO₂要在高温(至少500℃)和高压(10 bar)条件下进行[15]。光催化CO₂还原过程模拟自然光合作用,利用太阳能和光催化剂将CO₂和H₂O进行催化转化(亦称人工光合作用),在常温、常压条件下便可实现太阳能燃料和高价值化学品的生产,如:甲醇、乙醇、碳氢化合物等[16,17],如图2所示。因此,光催化CO₂还原也被认为是解决全球能源和环境问题的最有前途的方案之一。近年来,光催化CO₂还原的相关研究日渐增多。
相比于传统热催化方法,该反应具有如下四大优势[18]:
① 反应外部能量供应仅为太阳能,取之不尽用之不竭;
② 反应以H₂O和CO₂为反应原料,易于获取;
③ 反应条件温和,一般为常温、常压;
④ 反应无二次污染。
02
光催化CO₂还原反应是一个复杂的多步过程。一般情况下,该反应过程主要涉及如下三个步骤[18]:
① 半导体光催化剂受到能量大于其禁带宽度(Eg)的光激发;
② 光生电子和光生空穴的分离;
③ 光生电子迁移到光催化剂表面与CO₂和H+发生反应并形成还原产物,光生空穴与H₂O发生氧化反应产生O₂。
整个光催化CO₂还原反应过程可以在纯气相中发生,也可在溶液体系中发生[16]。
03
① CO主要可被用作费托合成反应的原料气,用于生产高碳类化学品;
② CH4是天然气的主要成分,同时也可被用于CO₂的重整反应;
③ 液态产物CH3OH和HCOOH主要可被用于燃料电池,CH3OH也可作汽油的添加剂;
④ 乙烯主要用于聚乙烯和乙二醇的生产,乙烷用于制备乙烯。乙醇主要应用于化学溶剂、医疗和燃料中;
⑤ 乙二醇用于聚乙烯对苯二甲酸酯(涤纶的原料)的生产。
04
CO₂的C=O键能高达750 kJ·mol-1,其线性对称分子结构使其不易被活化[16,20]。因此,在热力学上,CO₂的活化需要高能输入。受制于转化效率和选择性问题,目前的光催化CO₂还原研究仍处于实验室阶段。
现阶段光催化CO₂反应主要面临以下几方面挑战[3,16]:
① 催化剂有限的光吸收能力;
② 严重的光生载流子复合;
③ CO₂难于吸附活化;
④ 竞争反应(析氢反应)需被有效抑制;
⑤ 光催化剂的稳定性有待提升;
⑥ 待开发简便的催化剂合成工艺;
⑦ 缺乏大量反应机理研究,还原产物的选择性难于调控。
针对以上问题:
一方面可以通过设计合成高效催化剂提升光催化CO₂还原反应的转化效率和提高目标产物的选择性;
另一方面,泊菲莱科技期望与各位专家朋友们进行交流和深入合作,开发设计合理的反应器,通过优化反应工艺,积极推动光催化CO₂还原反应的相关研究。
参考
文献
向上滑动阅览
[1] Lin Huiwen, Zhang Huabin*, Ye Jinhua* et. al., Toward solar-driven carbon recycling[J]. Joule, 2022, 6, 1-21.
[2] R. Keeling, Scripps institution of oceanography. scrippsco2.ucsd. edu/, 2022.
[3] Gong Eunhee, Ali Shahzad, In Su-Il* et. al., Solar fuels: research and development strategies to accelerate photocatalytic CO₂ conversion into hydrocarbon fuels[J]. Energy Environmental Science, 2022. DOI: 10.1039/d1ee0271
[4] Wang Wan-Hui*, Himeda Yuichiro*, Fujita Etsuko* et. al., CO₂ hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO₂ reduction[J]. Chemical Reviews, 2015, 115, 12936−12973.
[5] Rui Ning, Rodriguez José A.*, Liu Chang-Jun* et. al., Hydrogenation of CO₂ to methanol on a Auδ+-In2O3–x catalyst[J]. ACS Catalysis, 2020, 10, 11307-11317.
[6] Hu Jingting, Wang Ye*, Deng Dehui* et. al., Sulfur vacancy-rich MoS₂ as a catalyst for the hydrogenation of CO₂ to methanol[J]. Nature Catalysis, 2021, 4, 242-250.
[7] Gong Fuyu, Zhang Yanping* et. al., Li Yin*, Biological carbon fixation: From natural to synthetic[J]. Journal of CO₂ Utilization, 2018, 28, 221-227.
[8] Dong Wan Jae, Lee Jong-Lam*, Zetian Mi*, et. al., Silver halide catalysts on GaN nanowires/Si heterojunction photocathodes for CO₂ reduction to syngas at high current density[J]. ACS Catalysis, 2022, 12, 2671-2680.
[9] Qin Yin, Hu Liuyong*, Gu Wenling*, et. al., Iron single-atom catalysts boost photoelectrochemical detection by integrating interfacial oxygen reduction and enzyme-mimicking activity[J]. ACS Nano, 2022. DOI: 10.1021/acsnano.1c10303.
[10] Liu Shuai, Chen Yu*, Liu Xijun*, et. al., Coordination environment engineering to boost electrocatalytic CO₂ reduction performance by introducing boron into single-Fe-atomic catalyst[J]. Chemial Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.135294.
[11] Luc Wesley, Chen Jingguang G.*, Jiao Feng* et. al., SO₂-induced selectivity change in CO₂ electroreduction[J]. Journal of the American Chemical Society, 2019, 141, 9902-9909.
[12] Liu Qiong, Xiang Zhangmin*, Wang Fuxian*, et. al., Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO₂ reduction to CH3CHO over locally crystallized carbon nitride[J]. Energy Environmental Science, 2022, 15, 225.
[13] Li Fang, Yue Xiaoyang, Xiang Quanjun*, et. al., Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO₂ reduction[J]. Applied Catalysis B: Environmental, 2021, 292, 120179.
[14] Hao Jingxuan, Min Yulin*, Li Hexing*, et. al., Utilizing new metal phase nanocomposites deep photocatalytic conversion of CO₂ to C2H4 [J]. Chemical Engineering Journal, 2021, 423, 130190.
[15] Kovačič Žan, Likozar Blaž*, Huš Matej*, Photocatalytic CO₂ reduction: a review of Ab initio mechanism, kinetics, and multiscale modeling simulations[J]. ACS Catalysis, 10, 14984-15007.
[16] Shen Huidong, Peppel Tim*, Sun Zhenyu*, et. al., Photocatalytic reduction of CO₂ by metal-free-Based materials: recent advances and future perspective[J]. Solar RRL 2020, 4, 1900546.
[17] Li Xin, Yu Jiaguo*, Jaroniec Mietek* et. al., Cocatalysts for selective photoreduction of CO₂ into solar fuels[J]. Chemical Reviews, 2019, 119, 3962-4179.
[18] Fu Junwei, Yu Jiaguo*, Liu Min*, et. al., Product selectivity of photocatalytic CO₂ reduction reactions[J]. Materials Today, 2020, 32, 222-243.
[19] Albero Josep, Peng Yong, García Hermenegildo*, et. al., Photocatalytic CO₂ reduction to C2+ products[J]. ACS Catalysis, 2020, 10, 5734−5749.
[20] Liu Lizhen, Huang Hongwei*, Ma Tianyi*, et. al., Surface sites engineering on semiconductors to boost photocatalytic CO₂ reduction[J]. Nano Energy, 2020, 75, 104959.
1
END
1
北京泊菲莱科技有限公司创立于2006年,是集研发、生产、销售、服务于一体的国家级高新技术企业,致力于开发智能化、高精度、高性能的高科技设备企业。泊菲莱科技拥有多种自主知识产权,现已应用于新能源、药物合成、精细化工等各类科研领域,在立足于国内市场的同时,多款产品也远销海外。泊菲莱科技荣获国家级高新技术企业、中关村高新技术企业、2020年北京市第一批“专精特新”企业等称号,先后获得ISO9001质量体系认证、GB/T27922-2011《商品售后服务评价体系》五星级标准企业等资质。
泊菲莱科技不仅拥有雄厚的研发实力,也一直秉持着“以客户为中心”的服务理念和“创见、实干、卓越”的企业精神,作为科技型高新企业,积极创导各类光源的尖端科技,不断革新,不断挑战,以卓越创新的进取精神,推动自身的不断成长和壮大。
# 3分钟学会“STH能量转化效率”的测量!# 你计算的量子产率,就真的是AQY吗?
#
文献里提到的AM 1.5G滤光片,究竟是什么?
(谢谢)喜欢的话,点一下“在看”哦↓↓