Hbase源码系列之BufferedMutator的Demo和源码解析
一,基本介绍
BufferedMutator主要用来异步批量的将数据写入一个hbase表,就像Htable一样。通过Connection获取一个实例。Map/reduce 任务是BufferedMutator的好的使用案例。Map/Reduce任务获益于batch操作,但是没有留出flush接口。BufferedMutator从Map/Reduce任务接受数据,会依据一些先验性的经验批量提交数据,比如puts堆积的数量,由于批量提交时异步的,所以M/R逻辑不会因为数据的batch提交而阻塞。Map/Reduce 批处理任务每个线程会有一个BufferedMutator。单个BufferedMutator也能够很高效用于大数据量的在线系统,来成批的写puts入hbase表。
二,使用demo
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum", "zookeeperHost");
final BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() {
@Override
public void onException(RetriesExhaustedWithDetailsException e, BufferedMutator mutator) {
for (int i = 0; i < e.getNumExceptions(); i++) {
LOG.info("Failed to sent put " + e.getRow(i) + "."); }
}
};
BufferedMutatorParams params = new BufferedMutatorParams(TABLE)
.listener(listener);
params.writeBufferSize(123123L);
try {
Connection conn = ConnectionFactory.createConnection(conf);
BufferedMutator mutator = conn.getBufferedMutator(params);
Put p = new Put(Bytes.toBytes("someRow"));
p.addColumn(FAMILY, Bytes.toBytes("someQualifier"), Bytes.toBytes("some value"));
mutator.mutate(p);
mutator.close();
conn.close();
} catch (IOException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
}
三,源码介绍
1,主要类介绍
BufferedMutatorParams
实例化一个BufferedMutator所需要的参数。
主要参数TableName(表名),writeBufferSize(写缓存大小),maxKeyValueSize(最大key-value大小),ExecutorService(执行线程池),ExceptionListener(监听BufferedMutator的异常)。
BufferedMutatorImpl
用来和hbase表交互,类似于Htable,但是意味着批量,异步的puts。通过HConnectionImplementation获得实例,具体方法如下:
public BufferedMutator getBufferedMutator(BufferedMutatorParams params) {
if (params.getTableName() == null) {
throw new IllegalArgumentException("TableName cannot be null.");
}
if (params.getPool() == null) {
params.pool(HTable.getDefaultExecutor(getConfiguration()));
}
if (params.getWriteBufferSize() == BufferedMutatorParams.UNSET) {
params.writeBufferSize(connectionConfig.getWriteBufferSize());
}
if (params.getMaxKeyValueSize() == BufferedMutatorParams.UNSET) {
params.maxKeyValueSize(connectionConfig.getMaxKeyValueSize());
}
return new BufferedMutatorImpl(this, rpcCallerFactory, rpcControllerFactory, params);
}
AsyncProcess
AsyncProcess内部维护的有一个线程池,我们的操作会被封装成runnable,然后扔到线程池里执行。这个过程是异步的,直到任务数达到最大值。
HConnectionImplementation
一个集群的链接。通过它可以找到master,定位到regions的分布,保持locations的缓存,并指导如何校准localtions信息。
2,源码过程
A),BufferedMutator构建的过程
1),首先是要构建一个HBaseConfiguration
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum", "zookeeperHost");
2),接着是构建BufferedMutatorParams
final BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() {
@Override
public void onException(RetriesExhaustedWithDetailsException e, BufferedMutator mutator) {
for (int i = 0; i < e.getNumExceptions(); i++) {
LOG.info("Failed to sent put " + e.getRow(i) + ".");
}
}
};
BufferedMutatorParams params = new BufferedMutatorParams(TABLE)
.listener(listener);
params.writeBufferSize(123);
3),最后构建HConnection
Connection conn = ConnectionFactory.createConnection(getConf())
4),最后构建BufferMutator
BufferedMutator mutator = conn.getBufferedMutator(params)
B),数据发送的过程
1),构建put或者List[put]
2),调用BufferedMutator.mutate方法
3),刷写到hbase。
三种方法:
一是,显式调用BufferedMutator.flush
二是,发送结束的时候调用BufferedMutator.close
三是,它根据当前缓存大于了设置的写缓存大小
while (undealtMutationCount.get() != 0
&& currentWriteBufferSize.get() > writeBufferSize) {
backgroundFlushCommits(false);
}
最终都是调用的backgroundFlushCommits方法。
4),rpc的过程
入口是backgroundFlushCommits方法。Ap是AsyncProcess的实例。
ap.submit(tableName, taker, true, null, false);
首先是构建了一个HashMap,可以通过server找到该server上我们需要的region
//可以根据我们的server找到要发送到该server的actions
Map<ServerName, MultiAction<Row>> actionsByServer =
new HashMap<ServerName, MultiAction<Row>>();
获取所有的region信息,所有region的副本都被包括在内
RegionLocations locs = connection.locateRegion(
tableName, r.getRow(), true, true, RegionReplicaUtil.DEFAULT_REPLICA_ID);
获取默认的region信息此时一个region只会返回一个默认id指定的位置。
loc = locs.getDefaultRegionLocation();
将row操作转变为action,并加入actionsByServer
//可以操作将row操作变为Action
Action<Row> action = new Action<Row>(r, ++posInList);
setNonce(ng, r, action);
retainedActions.add(action);
// TODO: replica-get is not supported on this path
byte[] regionName = loc.getRegionInfo().getRegionName();
addAction(loc.getServerName(), regionName, action, actionsByServer, nonceGroup);
it.remove();
接着是
AsyncProcess.submitMultiActions
AsyncRequestFutureImpl<CResult>
.sendMultiAction(actionsByServer, 1, null, false);
内部主要是根据server,获取MultiAction,然后构建Runnable
for (Map.Entry<ServerName, MultiAction<Row>> e : actionsByServer.entrySet()) {
ServerName server = e.getKey();
MultiAction<Row> multiAction = e.getValue();
Collection<? extends Runnable> runnables = getNewMultiActionRunnable(server, multiAction,
numAttempt);
// make sure we correctly count the number of runnables before we try to reuse the send
// thread, in case we had to split the request into different runnables because of backoff
if (runnables.size() > actionsRemaining) {
actionsRemaining = runnables.size();
}
然后,遍历执行Runnable
for (Runnable runnable : runnables) {
if ((--actionsRemaining == 0) && reuseThread
&& numAttempt % HConstants.DEFAULT_HBASE_CLIENT_RETRIES_NUMBER != 0) {
runnable.run();
} else {
try {
pool.submit(runnable);
5),Runnable的构建及Run方法
主要是进入getNewMultiActionRunnable
List<Runnable> toReturn = new ArrayList<Runnable>(actions.size());
for (DelayingRunner runner : actions.values()) {
incTaskCounters(runner.getActions().getRegions(), server);
String traceText = "AsyncProcess.sendMultiAction";
Runnable runnable = createSingleServerRequest(runner.getActions(), numAttempt, server, callsInProgress);
// use a delay runner only if we need to sleep for some time
if (runner.getSleepTime() > 0) {
runner.setRunner(runnable);
traceText = "AsyncProcess.clientBackoff.sendMultiAction";
runnable = runner;
if (connection.getConnectionMetrics() != null) {
connection.getConnectionMetrics().incrDelayRunners();
connection.getConnectionMetrics().updateDelayInterval(runner.getSleepTime());
}
} else {
if (connection.getConnectionMetrics() != null) {
connection.getConnectionMetrics().incrNormalRunners();
}
}
runnable = Trace.wrap(traceText, runnable);
toReturn.add(runnable);
进入SingleServerRequestRunnable,分析其Run方法
// setup the callable based on the actions, if we don't have one already from the request
if (callable == null) {
callable = createCallable(server, tableName, multiAction);
}
RpcRetryingCaller<MultiResponse> caller = createCaller(callable, rpcTimeout);
try {
if (callsInProgress != null) {
callsInProgress.add(callable);
}
res = caller.callWithoutRetries(callable, operationTimeout);
然后是RpcRetryingCaller中调用了MultiServerCallable的call方法,主要是构建请求,调用RPC。这就进入了服务端也即RSRpcServices的mutil方法。
responseProto = getStub().multi(controller, requestProto);
C),HRegionserver端处理
RSRpcServices是服务端,本文对应的服务端实现是RSRpcServices.mutli。
if (request.hasCondition()) {
Condition condition = request.getCondition();
byte[] row = condition.getRow().toByteArray();
byte[] family = condition.getFamily().toByteArray();
byte[] qualifier = condition.getQualifier().toByteArray();
CompareOp compareOp = CompareOp.valueOf(condition.getCompareType().name());
ByteArrayComparable comparator =
ProtobufUtil.toComparator(condition.getComparator());
processed = checkAndRowMutate(region, regionAction.getActionList(),
cellScanner, row, family, qualifier, compareOp,
comparator, regionActionResultBuilder);
} else {
mutateRows(region, regionAction.getActionList(), cellScanner,
regionActionResultBuilder);
processed = Boolean.TRUE;
}
根据条件进入checkAndRowMutate或者mutateRows。
根据类型做不同的操作,然后正式进入执行操作
MutationType type = action.getMutation().getMutateType();
if (rm == null) {
rm = new RowMutations(action.getMutation().getRow().toByteArray());
}
switch (type) {
case PUT:
rm.add(ProtobufUtil.toPut(action.getMutation(), cellScanner));
break;
case DELETE:
rm.add(ProtobufUtil.toDelete(action.getMutation(), cellScanner));
break;
default:
throw new DoNotRetryIOException("Atomic put and/or delete only, not " + type.name());
}
// To unify the response format with doNonAtomicRegionMutation and read through client's
// AsyncProcess we have to add an empty result instance per operation
resultOrExceptionOrBuilder.clear();
resultOrExceptionOrBuilder.setIndex(i++);
builder.addResultOrException(
resultOrExceptionOrBuilder.build());
}
region.mutateRow(rm);
HRegion.mutateRow方法
HRegion.mutateRowsWithLocks
public void mutateRowsWithLocks(Collection<Mutation> mutations,
Collection<byte[]> rowsToLock) throws IOException {
mutateRowsWithLocks(mutations, rowsToLock, HConstants.NO_NONCE, HConstants.NO_NONCE);
}
public void mutateRowsWithLocks(Collection<Mutation> mutations,
Collection<byte[]> rowsToLock, long nonceGroup, long nonce) throws IOException {
MultiRowMutationProcessor proc = new MultiRowMutationProcessor(mutations, rowsToLock);
processRowsWithLocks(proc, -1, nonceGroup, nonce);
}
具体处理的过程,可以自行去看了,源码注释条例很清晰。
四,总结
Hbase的JAVA API客户端,写操作有三种实现:
1,HTablePool
源码请看hbase权威指南。
2,HConnection
这种方式要自己实现一个线程池。
Connection conn = ConnectionFactory.createConnection(conf);
TableName tabName= TableName.valueOf("tableName");
Table table=conn.getTable(tabName);
3,BufferedMutator
建议put操作采用这种方式。
批量,异步puts操作。MR都在采用,你还在等啥呢。
Demo请看上文。
客户端读写数据的操作,我们就讲这两篇,后面开始讲HBase的MR建立二级索引的实现及原理源码。然后就开始讲解管理类操作的实现。
欢迎关注浪尖公众号,一起学习kafka,hbase,spark源码。