查看原文
其他

用R-Shiny打造一个美美的在线App

2017-06-01 杜雨 R语言中文社区

 作者:杜雨,EasyCharts团队成员,R语言中文社区专栏作者,兴趣方向为:Excel商务图表,R语言数据可视化,地理信息数据可视化。
个人公众号:数据小魔方(微信ID:datamofang) ,“数据小魔方”创始人。 


最近迷上了动态可视化,突然发现shiny真是个好东西,能够将我之前所学都完美的结合在一起,形成一个集成的动态仪表盘!


今天做一个小小的案例,算是shiny动态可视化的小开端……

这个案例是之前发过的中国人口结构动态金字塔图,这个图还是蛮不错,数据取自UN的官网,非常有现实意义的人口性别结构数据。


library(ggplot2)

library(animation)

library(dplyr)

library(tidyr)

library(xlsx)

library(ggthemes)

library(shiny)

library(shinythemes)


做简单的数据清洗工作,为shiny提供可用的数据源:

setwd("D:/R/File")

windowsFonts(myfont=windowsFont("微软雅黑"))

female<-read.xlsx("Population.xlsx",sheetName="Female",header=T,encoding='UTF-8',check.names = FALSE)

male<-read.xlsx("Population.xlsx",sheetName="Male",header=T,encoding='UTF-8',check.names = FALSE)

female<-female%>%gather(Year,Poputation,-1)

male<-male%>%gather(Year,Poputation,-1)

female$Poputation<-female$Poputation*-1

male$sex<-"male";female$sex<-"female"

China_Population<-rbind(male,female)%>%mutate(abs_pop=abs(Poputation))

China_Population$agegroup<-factor(China_Population$agegroup,

levels=c("0-4","5-9","10-14","15-19","20-24","25-29","30-34","35-39","40-44","45-49","50-54","55-59","60-64","65-69","70-74","75-79","80+") ,order=T)

China_Population_dd<-filter(China_Population,Year==1995)


定制shinyapp的ui


ui <-shinyUI(fluidPage(

theme=shinytheme("cerulean"), 

titlePanel("Population Structure Data"),

    sidebarLayout(

        sidebarPanel(

            selectInput("var1", "x-axis",c("agegroup"="agegroup","Poputation"="Poputation","sex"="sex"),selected="agegroup"),

            selectInput("var2", "y-axis",c("agegroup"="agegroup","Poputation"="Poputation","sex"="sex"),selected="Poputation"),

            selectInput("var3", "Gender",c("agegroup"="agegroup","Poputation"="Poputation","sex"="sex"),selected="sex"),

            selectInput("theme", "Choose a ShinyTheme:",choices ("cerulean","cosmo","cyborg","darkly","flatly","journal","lumen","paper",

            "readable","sandstone","simplex","slate","spacelab","superhero","united","yeti")),

            sliderInput("var4","Year",min=1950,max=2015,value=5,step=5)

         ),

         mainPanel(h2('Dynamic pyramid of population structure in China'),plotOutput("distPlot"))

    )

))


定制shiny的输出服务端:


server<-shinyServer(function(input,output){

    output$distPlot <- renderPlot({

    mydata=filter(China_Population,Year==input$var4)

    argu1<-switch(input$var1,agegroup=mydata$agegroup,Poputation=mydata$Poputation,sex=mydata$sex)

    argu2<-switch(input$var2,agegroup=mydata$agegroup,Poputation=mydata$Poputation,sex=mydata$sex) 

    argu3<-switch(input$var3,agegroup=mydata$agegroup,Poputation=mydata$Poputation,sex=mydata$sex) 

    ggplot(data=mydata,aes(x=argu1,y=argu2,fill=argu3))+

        coord_fixed()+ 

        coord_flip() +

        geom_bar(stat="identity",width=1) +

        scale_y_continuous(breaks = seq(-70000,70000,length=9),

                         labels = paste0(as.character(c(abs(seq(-70,70,length=9)))), "m"), 

                         limits = c(-75000,75000)) +

        theme_economist(base_size=14)+ 

        scale_fill_manual(values=c('#D40225','#374F8F')) + 

        labs(title=paste0("Population structure of China:",input$var4),

        caption="Data Source:United Nations Department of Economic and Docial Affairs\nPopulation Division\nWorld Population Prospects,the 2015 Revision"

        ,y="Population",x="Age") + 

        guides(fill=guide_legend(reverse=TRUE))+

        theme(

             text=element_text(family="myfont"),

             legend.position =c(0.8,0.9),

             legend.title = element_blank(),

             plot.title = element_text(size=20),

             plot.caption = element_text(size=12,hjust=0)

         )

  })

})


运行app:


shinyApp(ui=ui,server=server)


动态视频展示:


https://v.qq.com/txp/iframe/player.html?vid=s13179vhrea&width=500&height=375&auto=0




微信回复关键字即可学习

回复 R              R语言快速入门免费视频 
回复 统计          统计方法及其在R中的实现
回复 用户画像   民生银行客户画像搭建与应用 
回复 大数据      大数据系列免费视频教程
回复 可视化      利用R语言做数据可视化
回复 数据挖掘   数据挖掘算法原理解释与应用
回复 机器学习   R&Python机器学习入门 





您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存