Lesson 05 for Plotting in R for Biologists
taoyan:R语言中文社区特约作家,伪码农,R语言爱好者,爱开源。
个人博客: https://ytlogos.github.io/
往期回顾
ggplot2学习笔记系列之利用ggplot2绘制误差棒及显著性标记
R语言data manipulation学习笔记之创建变量、重命名、数据融合
R语言data manipulation学习笔记之subset data
Lesson 01 for Plotting in R for Biologists
这节课作者命名为”Tweaking everything in a plot”。主要是对图形细节进行优化,包括:
题目(title)、坐标轴标签、图例标签等
字体
颜色
背景
网格线等
数据加载及清洗
这部分在上节课已经讲过了,这里就不再详述了。
library(tidyverse)
library(plyr)
my_data <- read.csv("Encode_HMM_data.txt", sep = "\t", header = FALSE)
names(my_data)[1:4] <- c("chrom","start","stop","type")
my_data$chrom <- factor(gsub("chr","", my_data$chrom, fixed = TRUE), levels = c(seq(1:22),"X","Y"))
my_data <- my_data[my_data$type %in% c("1_Active_Promoter","4_Strong_Enhancer","8_Insulator"), ]
my_data$type <- revalue(my_data$type, c("1_Active_Promoter"="Promoter", "4_Strong_Enhancer"="Enhancer","8_Insulator"="Insulator"))
可视化
接下来就针对图形进行优化调整
ggplot(my_data, aes(x=chrom, fill=type))+geom_bar()
添加标题
ggplot(my_data, aes(x=chrom, fill=type))+geom_bar()+labs(title="Regulatory features by chromosomes")
需要注意的一点是,添加的title默认是位于左上角,如果要居中显示的话最简单的办法就是在标题前添加空格。
修改坐标轴以及图例标签
ggplot(my_data, aes(x=chrom, fill=type))+
geom_bar()+
labs(x="Chromosome", y="Count", fill="Feature")#这里fill是对应ampping里面的fill映射,显示于图例
主题修改
basic <- ggplot(my_data, aes(x=chrom, fill=type))+
geom_bar()+
labs(x="Chromosome", y="Count", fill="Feature")
#设置文本大小
(basic+theme_gray(base_size = 20))
如果想要使得主题适用于所有的图形,可以通过theme_set()进行设置。
theme_set(theme_gray(base_size = 20))
basic
恢复默认设置主题
theme_set(theme_gray())
basic
颜色
R有个包RColorNBrewer提供调色板
library(RColorBrewer)
display.brewer.all()
下面测试一下这些调色板
basic+scale_fill_brewer(palette = "Set1")
basic+scale_fill_brewer(palette = "Pastel1")
basic+scale_fill_brewer(palette = "YlorRd")
不使用调色板的话也可以自己设置颜色,结合取色器的话很是很赞的
basic+scale_fill_manual(values = c("green", "blue", "red"))
head(colors())
## [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
## [5] "antiquewhite2" "antiquewhite3"
有的时候我们需要很多种颜色,多到一个调色板都满足不了时怎么办?
chrom_plot <- ggplot(my_data, aes(x=type, fill=chrom))+geom_bar()
chrom_plot
chrom_plot+scale_fill_brewer(type = "qual", palette = 1)
palette1 <- brewer.pal(9, "Set1")
palette1
## [1] "#E41A1C" "#377EB8" "#4DAF4A" "#984EA3" "#FF7F00" "#FFFF33" "#A65628"
## [8] "#F781BF" "#999999"
palette2 <- brewer.pal(8, "Set2")
palette2
## [1] "#66C2A5" "#FC8D62" "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F" "#E5C494"
## [8] "#B3B3B3"
palette3 <- brewer.pal(9, "Set3")
palette3
## [1] "#8DD3C7" "#FFFFB3" "#BEBADA" "#FB8072" "#80B1D3" "#FDB462" "#B3DE69"
## [8] "#FCCDE5" "#D9D9D9"
通过饼图来查看一下这几个调色板
pie(rep(1, length(palette1)), col = palette1)
pie(rep(1, length(palette2)), col = palette2)
pie(rep(1, length(palette3)), col = palette3)
将这几个色斑合并成一个大的调色板
big_palette <- c(palette1, palette2, palette3)
pie(rep(1, length(big_palette)), col = big_palette)
chrom_plot+scale_fill_manual(values = big_palette)
也可以打乱颜色顺序
chrom_plot+scale_fill_manual(values = sample(big_palette))
字体
后续大部分调整都是通过theme来实现的。
#对所有字体进行调整
basic+theme_gray(base_size = 24, base_family = "Times New Roman")
但是很多时候我们都是对特定字体、标签、颜色等进行特定的调整,这时就可以通过theme逐一调整。
basic+theme(axis.text = element_text(size=20))
basic+theme(axis.title = element_text(size = 20))
basic+theme(legend.title = element_text(size = 20))
basic+theme(legend.text = element_text(size=20, family = "Times New Roman"))
basic+theme(legend.text = element_text(size=20, family = "Times New Roman"),
axis.title = element_text(size=30),
axis.text = element_text(size=20))
背景
basic+theme(panel.background = element_rect(fill="pink"))
basic+theme(panel.background = element_rect(fill="white"))
网格线
basic+theme(panel.grid.major = element_line(colour = "blue"), panel.grid.minor = element_line(colour = "red"))
移除所有的网格线
basic+theme(panel.grid.major = element_line(NA),
panel.grid.minor = element_line(NA))
只保留y轴线
basic+theme(panel.grid.major.y = element_line(colour = "black", size = 0.20),
panel.grid.major.x = element_line(NA),
panel.grid.minor = element_line(NA))
修改刻度
basic+theme(axis.ticks = element_line(size=0.2))
basic+theme(axis.ticks = element_line(NA))
basic+theme(axis.ticks = element_line(colour = "blue", size = 2))
basic+theme(axis.ticks = element_line(size=2),
axis.ticks.x = element_line(colour = "blue"),
axis.ticks.y = element_line(colour = "red"))
图例
修改图例位置
basic+theme(legend.position = "top")
basic+theme(legend.position = "bottom")
basic+theme(legend.position = c(0,0))#左下角
basic+theme(legend.position = c(1,1))#右上角
basic+theme(legend.position = c(0.8,0.8))#通过坐标设置可以将图例置于任意位置
移除图例
basic+labs(fill="")
basic+labs(fill="")+theme(legend.position = c(0.8,0.8))
看看文章发表样式图形
publication_style <- basic+guides(fill=FALSE)+
theme(axis.line = element_line(size = 0.5),
panel.background = element_rect(fill=NA, size = rel(20)),
panel.grid.minor = element_line(colour = NA),
axis.text = element_text(size=16),
axis.title = element_text(size = 18))
publication_style
将柱形图与x轴之间的距离消除
publication_style+scale_y_continuous(expand = c(0,0))
可以看到上述图形基本达到了文章发表的水平,因此我们可以将主题theme保存下来以后使用,通过设置全局主题来使所有图形有相同版式。
theme_set(theme_gray()+
theme(axis.line = element_line(size = 0.5),
panel.background = element_rect(fill=NA, size = rel(20)),
panel.grid.minor = element_line(colour = NA),
axis.text = element_text(size = 16),
axis.title = element_text(size = 18)))
basic
basic+scale_y_continuous(expand = c(0,0))+guides(fill=FALSE)
如果需要还原主题设定的话,只要运行以下命令就行:
theme_set(theme_gray())
SessionInfO()
sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 16299)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936
## [2] LC_CTYPE=Chinese (Simplified)_China.936
## [3] LC_MONETARY=Chinese (Simplified)_China.936
## [4] LC_NUMERIC=C
## [5] LC_TIME=Chinese (Simplified)_China.936
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] RColorBrewer_1.1-2 plyr_1.8.4 forcats_0.2.0
## [4] stringr_1.2.0 dplyr_0.7.4 purrr_0.2.4
## [7] readr_1.1.1 tidyr_0.7.2 tibble_1.4.2
## [10] ggplot2_2.2.1.9000 tidyverse_1.2.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.15 cellranger_1.1.0 pillar_1.1.0
## [4] compiler_3.4.3 bindr_0.1 tools_3.4.3
## [7] digest_0.6.14 lubridate_1.7.1 jsonlite_1.5
## [10] evaluate_0.10.1 nlme_3.1-131 gtable_0.2.0
## [13] lattice_0.20-35 pkgconfig_2.0.1 rlang_0.1.6
## [16] psych_1.7.8 cli_1.0.0 rstudioapi_0.7
## [19] yaml_2.1.16 parallel_3.4.3 haven_1.1.1
## [22] bindrcpp_0.2 xml2_1.2.0 httr_1.3.1
## [25] knitr_1.18 hms_0.4.1 rprojroot_1.3-2
## [28] grid_3.4.3 glue_1.2.0 R6_2.2.2
## [31] readxl_1.0.0 foreign_0.8-69 rmarkdown_1.8
## [34] modelr_0.1.1 reshape2_1.4.3 magrittr_1.5
## [37] backports_1.1.2 scales_0.5.0.9000 htmltools_0.3.6
## [40] rvest_0.3.2 assertthat_0.2.0 mnormt_1.5-5
## [43] colorspace_1.3-2 labeling_0.3 stringi_1.1.6
## [46] lazyeval_0.2.1 munsell_0.4.3 broom_0.4.3
## [49] crayon_1.3.4
公众号后台回复关键字即可学习
回复 R R语言快速入门及数据挖掘
回复 Kaggle案例 Kaggle十大案例精讲(连载中)
回复 文本挖掘 手把手教你做文本挖掘
回复 可视化 R语言可视化在商务场景中的应用
回复 大数据 大数据系列免费视频教程
回复 量化投资 张丹教你如何用R语言量化投资
回复 用户画像 京东大数据,揭秘用户画像
回复 数据挖掘 常用数据挖掘算法原理解释与应用
回复 机器学习 人工智能系列之机器学习与实践
回复 爬虫 R语言爬虫实战案例分享