查看原文
其他

分库分表?如何做到永不迁移数据和避免热点吗?

作者:老顾聊技术 搜云库技术团队 2019-11-01
点击上面 蓝色字体 关注我们技术 / 架构 / 职场 / 面试 
关注即送:4000G  架构师视频

来源:https://www.toutiao.com/i6677459303055491597

中大型项目中,一旦遇到数据量比较大,小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种。

垂直拆分比较简单,也就是本来一个数据库,数据量大之后,从业务角度进行拆分多个库。如下图,独立的拆分出订单库 和 用户库。

水平拆分的概念,是同一个业务数据量大之后,进行水平拆分。

上图中订单数据达到了4000万,我们也知道mysql单表存储量推荐是百万级,如果不进行处理,mysql单表数据太大,会导致性能变慢。使用方案可以参考数据进行水平拆分。把4000万数据拆分4张表或者更多。当然也可以分库,再分表;把压力从数据库层级分开。

分库分表方案

分库分表方案中有常用的方案,hash取模和range范围方案;分库分表方案最主要就是路由算法,把路由的key按照指定的算法进行路由存放。老顾来介绍一下两个方案的特点。

hash取模方案

在我们设计系统之前,可以先预估一下大概这几年的订单量,如:4000万。每张表我们可以容纳1000万,也我们可以设计4张表进行存储。

那具体如何路由存储的呢?hash的方案就是对指定的路由key(如:id)对分表总数进行取模,上图中,id=12的订单,对4进行取模,也就是会得到0,那此订单会放到0表中。id=13的订单,取模得到为1,就会放到1表中。为什么对4取模,是因为分表总数是4。

优点:

订单数据可以均匀的放到那4张表中,这样此订单进行操作时,就不会有热点问题

热点的含义:热点的意思就是对订单进行操作集中到1个表中,其他表的操作很少。

订单有个特点就是时间属性,一般用户操作订单数据,都会集中到这段时间产生的订单。如果这段时间产生的订单 都在同一张订单表中,那就会形成热点,那张表的压力会比较大。

缺点:

将来的数据迁移和扩容,会很难

如:业务发展很好,订单量很大,超出了4000万的量,那我们就需要增加分表数。如果我们增加4个表

一旦我们增加了分表的总数,取模的基数就会变成8,以前id=12的订单按照此方案就会到4表中查询,但之前的此订单时在0表的,这样就导致了数据查不到。就是因为取模的基数产生了变化。

遇到这个情况,我们小伙伴想到的方案就是做数据迁移把之前的4000万数据,重新做一个hash方案,放到新的规划分表中。也就是我们要做数据迁移。这个是很痛苦的事情。有些小公司可以接受晚上停机迁移,但大公司是不允许停机做数据迁移的。

当然做数据迁移可以结合自己的公司的业务,做一个工具进行,不过也带来了很多工作量,每次扩容都要做数据迁移

那有没有不需要做数据迁移的方案呢,我们看下面的方案

range范围方案

range方案也就是以范围进行拆分数据。

range方案比较简单,就是把一定范围内的订单,存放到一个表中;如上图id=12放到0表中,id=1300万的放到1表中。设计这个方案时就是前期把表的范围设计好。通过id进行路由存放。

优点

我们小伙伴们想一下,此方案是不是有利于将来的扩容,不需要做数据迁移。即时再增加4张表,之前的4张表的范围不需要改变,id=12的还是在0表,id=1300万的还是在1表,新增的4张表他们的范围肯定是 大于 4000万之后的范围划分的。

缺点

有热点问题,我们想一下,因为id的值会一直递增变大,那这段时间的订单是不是会一直在某一张表中,如id=1000万 ~ id=2000万之间,这段时间产生的订单是不是都会集中到此张表中,这个就导致1表过热,压力过大,而其他的表没有什么压力

总结:

hash取模方案:没有热点问题,但扩容迁移数据痛苦

range方案:不需要迁移数据,但有热点问题。

那有没有一个方案,即不需要迁移数据,又能解决数据热点的问题呢?老顾会在下一篇文章中介绍此方案,达到完美的结合,谢谢!

如果对本文的内容有疑问,请在下面的评论系统中留言,谢谢。

版权申明:内容来源网络,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知我们,我们会立即删除并表示歉意。谢谢!

更多技术干货


推荐:最新200篇:技术文章整理 
为什么 Redis 单线程却能支撑高并发? 
面试中的这些坑,你踩过几个? 
一份完整的阿里云 Redis 开发规范 
最近面试 Java 后端开发的感受! 
作为面试官,我是如何甄别应聘者的包装程度

▼ 点击 阅读原文,可获得 4000G 架构师视频

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存