其他
哥教你,设计撑百万并发的数据库架构!
原文:http://h5ip.cn/AO4j(开源中国)
前言
因为这样的系统,实际上主要就是在前期快速的进行业务功能的开发,搞一个单块系统部署在一台服务器上,然后连接一个数据库就可以了。接着大家就是不停的在一个工程里填充进去各种业务代码,尽快把公司的业务支撑起来。
在运行的过程中系统访问数据库的性能越来越差,单表数据量越来越大,一些复杂查询 SQL直接拖垮!
这种时候就不得不考虑的解决方案:缓存,负载均衡,项目分块(微服务);数据库:读写分离,分库分表等技术
数据库服务器的磁盘 IO、网络带宽、CPU 负载、内存消耗,都会达到非常高的情况,数据库所在服务器的整体负载会非常重,甚至都快不堪重负了。 高峰期时,本来你单表数据量就很大,SQL 性能就不太好,这时加上你的数据库服务器负载太高导致性能下降,就会发现你的 SQL 性能更差了。 最明显的一个感觉,就是你的系统在高峰期各个功能都运行的很慢,用户体验很差,点一个按钮可能要几十秒才出来结果。 如果你运气不太好,数据库服务器的配置不是特别的高的话,弄不好你还会经历数据库宕机的情况,因为负载太高对数据库压力太大了。
如果订单一年有 1 亿条数据,可以把订单表一共拆分为 1024 张表,分散在5个库中,这样 1 亿数据量的话,分散到每个表里也就才 10 万量级的数据量,然后这上千张表分散在 5 台数据库里就可以了。
在写入数据的时候,需要做两次路由,先对订单 id hash 后对数据库的数量取模,可以路由到一台数据库上,然后再对那台数据库上的表数量取模,就可以路由到数据库上的一个表里了。
通过这个步骤,就可以让每个表里的数据量非常小,每年 1 亿数据增长,但是到每个表里才 10 万条数据增长,这个系统运行 10 年,每个表里可能才百万级的数据量。
全局唯一ID
第一个部分,是 1 个 bit:0,这个是无意义的。 第二个部分是 41 个 bit:表示的是时间戳。 第三个部分是 5 个 bit:表示的是机房 id,10001。 第四个部分是 5 个 bit:表示的是机器 id,1 1001。 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.CountDownLatch;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import lombok.ToString;
/**
* Copyright: Copyright (c) 2019
*
* @ClassName: IdWorker.java
* @Description: <p>SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。
* 其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。
* 这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,
* 用 10 bit 作为工作机器 id,12 bit 作为序列号
* </p>
* @version: v1.0.0
* @author: BianPeng
* @date: 2019年4月11日 下午3:13:41
*
* Modification History:
* Date Author Version Description
*---------------------------------------------------------------*
* 2019年4月11日 BianPeng v1.0.0 initialize
*/
public class SnowflakeIdFactory {
static Logger log = LoggerFactory.getLogger(SnowflakeIdFactory.class);
private final long twepoch = 1288834974657L;
private final long workerIdBits = 5L;
private final long datacenterIdBits = 5L;
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private final long sequenceBits = 12L;
private final long workerIdShift = sequenceBits;
private final long datacenterIdShift = sequenceBits + workerIdBits;
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private final long sequenceMask = -1L ^ (-1L << sequenceBits);
private long workerId;
private long datacenterId;
private long sequence = 0L;
private long lastTimestamp = -1L;
public SnowflakeIdFactory(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
//服务器时钟被调整了,ID生成器停止服务.
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
}
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
protected long timeGen() {
return System.currentTimeMillis();
}
public static void testProductIdByMoreThread(int dataCenterId, int workerId, int n) throws InterruptedException {
List<Thread> tlist = new ArrayList<>();
Set<Long> setAll = new HashSet<>();
CountDownLatch cdLatch = new CountDownLatch(10);
long start = System.currentTimeMillis();
int threadNo = dataCenterId;
Map<String,SnowflakeIdFactory> idFactories = new HashMap<>();
for(int i=0;i<10;i++){
//用线程名称做map key.
idFactories.put("snowflake"+i,new SnowflakeIdFactory(workerId, threadNo++));
}
for(int i=0;i<10;i++){
Thread temp =new Thread(new Runnable() {
public void run() {
Set<Long> setId = new HashSet<>();
SnowflakeIdFactory idWorker = idFactories.get(Thread.currentThread().getName());
for(int j=0;j<n;j++){
setId.add(idWorker.nextId());
}
synchronized (setAll){
setAll.addAll(setId);
log.info("{}生产了{}个id,并成功加入到setAll中.",Thread.currentThread().getName(),n);
}
cdLatch.countDown();
}
},"snowflake"+i);
tlist.add(temp);
}
for(int j=0;j<10;j++){
tlist.get(j).start();
}
cdLatch.await();
long end1 = System.currentTimeMillis() - start;
log.info("共耗时:{}毫秒,预期应该生产{}个id, 实际合并总计生成ID个数:{}",end1,10*n,setAll.size());
}
public static void testProductId(int dataCenterId, int workerId, int n){
SnowflakeIdFactory idWorker = new SnowflakeIdFactory(workerId, dataCenterId);
SnowflakeIdFactory idWorker2 = new SnowflakeIdFactory(workerId+1, dataCenterId);
Set<Long> setOne = new HashSet<>();
Set<Long> setTow = new HashSet<>();
long start = System.currentTimeMillis();
for (int i = 0; i < n; i++) {
setOne.add(idWorker.nextId());//加入set
}
long end1 = System.currentTimeMillis() - start;
log.info("第一批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setOne.size(),end1);
for (int i = 0; i < n; i++) {
setTow.add(idWorker2.nextId());//加入set
}
long end2 = System.currentTimeMillis() - start;
log.info("第二批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setTow.size(),end2);
setOne.addAll(setTow);
log.info("合并总计生成ID个数:{}",setOne.size());
}
public static void testPerSecondProductIdNums(){
SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);
long start = System.currentTimeMillis();
int count = 0;
for (int i = 0; System.currentTimeMillis()-start<1000; i++,count=i) {
/** 测试方法一: 此用法纯粹的生产ID,每秒生产ID个数为400w+ */
//idWorker.nextId();
/** 测试方法二: 在log中打印,同时获取ID,此用法生产ID的能力受限于log.error()的吞吐能力.
* 每秒徘徊在10万左右. */
log.info(""+idWorker.nextId());
}
long end = System.currentTimeMillis()-start;
System.out.println(end);
System.out.println(count);
}
public static void main(String[] args) {
/** case1: 测试每秒生产id个数?
* 结论: 每秒生产id个数400w+
*/
//testPerSecondProductIdNums();
/** case2: 单线程-测试多个生产者同时生产N个id,验证id是否有重复?
* 结论: 验证通过,没有重复.
*/
//testProductId(1,2,10000);//验证通过!
//testProductId(1,2,20000);//验证通过!
/** case3: 多线程-测试多个生产者同时生产N个id, 全部id在全局范围内是否会重复?
* 结论: 验证通过,没有重复.
*/
try {
testProductIdByMoreThread(1,2,100000);//单机测试此场景,性能损失至少折半!
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
项目是一个递进的过程,优先考虑缓存,其次读写分离,再分表分库。当然这只是个人想法,各位伙伴还是根据自己的项目和业务来综合考虑实行方案。
-End-
加小编微信:xiaobaito,可以邀请加入咱们的「菜鸟架构」技术群一起讨论技术,禁止发广告及垃圾信息哦。
热门阅读
一文搞懂 API 网关,写得非常好!
更多请关注“菜鸟架构”公众号,将不断呈现更多架构干货!
给个在看,谢谢老板!