JAVA 线上故障排查完整套路,从 CPU、磁盘、内存、网络、GC 一条龙!
线上故障主要会包括cpu、磁盘、内存以及网络问题,而大多数故障可能会包含不止一个层面的问题,所以进行排查时候尽量四个方面依次排查一遍。
同时例如jstack、jmap等工具也是不囿于一个方面的问题的,基本上出问题就是df、free、top 三连,然后依次jstack、jmap伺候,具体问题具体分析即可。
CPU
一般来讲我们首先会排查cpu方面的问题。cpu异常往往还是比较好定位的。原因包括业务逻辑问题(死循环)、频繁gc以及上下文切换过多。而最常见的往往是业务逻辑(或者框架逻辑)导致的,可以使用jstack来分析对应的堆栈情况。
使用jstack分析cpu问题
我们先用ps命令找到对应进程的pid(如果你有好几个目标进程,可以先用top看一下哪个占用比较高)。
接着用top -H -p pid来找到cpu使用率比较高的一些线程
然后将占用最高的pid转换为16进制printf '%x\n' pid
得到nid
接着直接在jstack中找到相应的堆栈信息jstack pid |grep 'nid' -C5 –color
可以看到我们已经找到了nid为0x42的堆栈信息,接着只要仔细分析一番即可。
当然更常见的是我们对整个jstack文件进行分析,通常我们会比较关注WAITING和TIMED_WAITING的部分,BLOCKED就不用说了。我们可以使用命令cat jstack.log | grep "java.lang.Thread.State" | sort -nr | uniq -c
来对jstack的状态有一个整体的把握,如果WAITING之类的特别多,那么多半是有问题啦。
频繁gc
当然我们还是会使用jstack来分析问题,但有时候我们可以先确定下gc是不是太频繁,使用jstat -gc pid 1000命令来对gc分代变化情况进行观察,1000表示采样间隔(ms),S0C/S1C、S0U/S1U、EC/EU、OC/OU、MC/MU分别代表两个Survivor区、Eden区、老年代、元数据区的容量和使用量。
YGC/YGT、FGC/FGCT、GCT则代表YoungGc、FullGc的耗时和次数以及总耗时。如果看到gc比较频繁,再针对gc方面做进一步分析。
上下文切换
针对频繁上下文问题,我们可以使用vmstat命令来进行查看
cs(context switch)一列则代表了上下文切换的次数。
如果我们希望对特定的pid进行监控那么可以使用 pidstat -w pid命令,cswch和nvcswch表示自愿及非自愿切换。
磁盘问题和cpu一样是属于比较基础的。首先是磁盘空间方面,我们直接使用df -hl来查看文件系统状态
更多时候,磁盘问题还是性能上的问题。我们可以通过iostatiostat -d -k -x来进行分析
最后一列%util可以看到每块磁盘写入的程度,而rrqpm/s以及wrqm/s分别表示读写速度,一般就能帮助定位到具体哪块磁盘出现问题了。
另外我们还需要知道是哪个进程在进行读写,一般来说开发自己心里有数,或者用iotop命令来进行定位文件读写的来源。
不过这边拿到的是tid,我们要转换成pid,可以通过readlink来找到pidreadlink -f /proc/*/task/tid/../..。
找到pid之后就可以看这个进程具体的读写情况cat /proc/pid/io
我们还可以通过lsof命令来确定具体的文件读写情况lsof -p pid
内存问题排查起来相对比CPU麻烦一些,场景也比较多。主要包括OOM、GC问题和堆外内存。一般来讲,我们会先用free命令先来检查一发内存的各种情况。
堆内内存
内存问题大多还都是堆内内存问题。表象上主要分为OOM和StackOverflow。
OOM
JMV中的内存不足,OOM大致可以分为以下几种:
Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread
这个意思是没有足够的内存空间给线程分配java栈,基本上还是线程池代码写的有问题,比如说忘记shutdown,所以说应该首先从代码层面来寻找问题,使用jstack或者jmap。如果一切都正常,JVM方面可以通过指定Xss来减少单个thread stack的大小。
另外也可以在系统层面,可以通过修改/etc/security/limits.confnofile和nproc来增大os对线程的限制
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
这个意思是堆的内存占用已经达到-Xmx设置的最大值,应该是最常见的OOM错误了。解决思路仍然是先应该在代码中找,怀疑存在内存泄漏,通过jstack和jmap去定位问题。如果说一切都正常,才需要通过调整Xmx的值来扩大内存。
Caused by: java.lang.OutOfMemoryError: Meta space
这个意思是元数据区的内存占用已经达到XX:MaxMetaspaceSize设置的最大值,排查思路和上面的一致,参数方面可以通过XX:MaxPermSize来进行调整(这里就不说1.8以前的永久代了)。
Stack Overflow
栈内存溢出,这个大家见到也比较多。
Exception in thread "main" java.lang.StackOverflowError
表示线程栈需要的内存大于Xss值,同样也是先进行排查,参数方面通过Xss来调整,但调整的太大可能又会引起OOM。
使用JMAP定位代码内存泄漏
上述关于OOM和StackOverflow的代码排查方面,我们一般使用JMAPjmap -dump:format=b,file=filename pid来导出dump文件
通过mat(Eclipse Memory Analysis Tools)导入dump文件进行分析,内存泄漏问题一般我们直接选Leak Suspects即可,mat给出了内存泄漏的建议。另外也可以选择Top Consumers来查看最大对象报告。
和线程相关的问题可以选择thread overview进行分析。除此之外就是选择Histogram类概览来自己慢慢分析,大家可以搜搜mat的相关教程。
日常开发中,代码产生内存泄漏是比较常见的事,并且比较隐蔽,需要开发者更加关注细节。比如说每次请求都new对象,导致大量重复创建对象;进行文件流操作但未正确关闭;手动不当触发gc;ByteBuffer缓存分配不合理等都会造成代码OOM。
另一方面,我们可以在启动参数中指定-XX:+HeapDumpOnOutOfMemoryError
来保存OOM时的dump文件。
gc问题和线程
gc问题除了影响cpu也会影响内存,排查思路也是一致的。一般先使用jstat来查看分代变化情况,比如youngGC或者fullGC次数是不是太多呀;EU、OU等指标增长是不是异常呀等。
线程的话太多而且不被及时gc也会引发oom,大部分就是之前说的unable to create new native thread。除了jstack细细分析dump文件外,我们一般先会看下总体线程,通过pstreee -p pid |wc -l。
或者直接通过查看/proc/pid/task的数量即为线程数量。
堆外内存
如果碰到堆外内存溢出,那可真是太不幸了。首先堆外内存溢出表现就是物理常驻内存增长快,报错的话视使用方式都不确定,如果由于使用Netty导致的,那错误日志里可能会出现OutOfDirectMemoryError错误,如果直接是DirectByteBuffer,那会报OutOfMemoryError: Direct buffer memory
。
堆外内存溢出往往是和NIO的使用相关,一般我们先通过pmap来查看下进程占用的内存情况pmap -x pid | sort -rn -k3 | head -30,这段意思是查看对应pid倒序前30大的内存段。这边可以再一段时间后再跑一次命令看看内存增长情况,或者和正常机器比较可疑的内存段在哪里。
我们如果确定有可疑的内存端,需要通过gdb来分析gdb --batch --pid {pid} -ex "dump memory filename.dump {内存起始地址} {内存起始地址+内存块大小}"
获取dump文件后可用heaxdump进行查看hexdump -C filename | less,不过大多数看到的都是二进制乱码。
NMT是Java7U40引入的HotSpot新特性,配合jcmd命令我们就可以看到具体内存组成了。需要在启动参数中加入 -XX:NativeMemoryTracking=summary
或者 -XX:NativeMemoryTracking=detail
,会有略微性能损耗。
一般对于堆外内存缓慢增长直到爆炸的情况来说,可以先设一个基线jcmd pid VM.native_memory baseline。
然后等放一段时间后再去看看内存增长的情况,通过jcmd pid VM.native_memory detail.diff(summary.diff)做一下summary或者detail级别的diff。
可以看到jcmd分析出来的内存十分详细,包括堆内、线程以及gc(所以上述其他内存异常其实都可以用nmt来分析),这边堆外内存我们重点关注Internal的内存增长,如果增长十分明显的话那就是有问题了。
detail级别的话还会有具体内存段的增长情况,如下图。
此外在系统层面,我们还可以使用strace命令来监控内存分配 strace -f -e "brk,mmap,munmap" -p pid
这边内存分配信息主要包括了pid和内存地址。
不过其实上面那些操作也很难定位到具体的问题点,关键还是要看错误日志栈,找到可疑的对象,搞清楚它的回收机制,然后去分析对应的对象。比如DirectByteBuffer分配内存的话,是需要full GC或者手动system.gc来进行回收的(所以最好不要使用-XX:+DisableExplicitGC)。
那么其实我们可以跟踪一下DirectByteBuffer对象的内存情况,通过jmap -histo:live pid手动触发fullGC来看看堆外内存有没有被回收。如果被回收了,那么大概率是堆外内存本身分配的太小了,通过-XX:MaxDirectMemorySize进行调整。如果没有什么变化,那就要使用jmap去分析那些不能被gc的对象,以及和DirectByteBuffer之间的引用关系了。
GC问题
堆内内存泄漏总是和GC异常相伴。不过GC问题不只是和内存问题相关,还有可能引起CPU负载、网络问题等系列并发症,只是相对来说和内存联系紧密些,所以我们在此单独总结一下GC相关问题。
我们在cpu章介绍了使用jstat来获取当前GC分代变化信息。而更多时候,我们是通过GC日志来排查问题的,在启动参数中加上-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps
来开启GC日志。
常见的Young GC、Full GC日志含义在此就不做赘述了。
针对gc日志,我们就能大致推断出youngGC与fullGC是否过于频繁或者耗时过长,从而对症下药。我们下面将对G1垃圾收集器来做分析,这边也建议大家使用G1-XX:+UseG1GC。
youngGC过频繁
youngGC频繁一般是短周期小对象较多,先考虑是不是Eden区/新生代设置的太小了,看能否通过调整-Xmn、-XX:SurvivorRatio等参数设置来解决问题。如果参数正常,但是young gc频率还是太高,就需要使用Jmap和MAT对dump文件进行进一步排查了。
youngGC耗时过长
耗时过长问题就要看GC日志里耗时耗在哪一块了。以G1日志为例,可以关注Root Scanning、Object Copy、Ref Proc等阶段。Ref Proc耗时长,就要注意引用相关的对象。
Root Scanning耗时长,就要注意线程数、跨代引用。Object Copy则需要关注对象生存周期。而且耗时分析它需要横向比较,就是和其他项目或者正常时间段的耗时比较。比如说图中的Root Scanning和正常时间段比增长较多,那就是起的线程太多了。
触发fullGC
G1中更多的还是mixedGC,但mixedGC可以和youngGC思路一样去排查。触发fullGC了一般都会有问题,G1会退化使用Serial收集器来完成垃圾的清理工作,暂停时长达到秒级别,可以说是半跪了。
fullGC的原因可能包括以下这些,以及参数调整方面的一些思路:
并发阶段失败:在并发标记阶段,MixGC之前老年代就被填满了,那么这时候G1就会放弃标记周期。这种情况,可能就需要增加堆大小,或者调整并发标记线程数-XX:ConcGCThreads。 晋升失败:在GC的时候没有足够的内存供存活/晋升对象使用,所以触发了Full GC。这时候可以通过-XX:G1ReservePercent来增加预留内存百分比,减少-XX:InitiatingHeapOccupancyPercent来提前启动标记,-XX:ConcGCThreads来增加标记线程数也是可以的。 大对象分配失败:大对象找不到合适的region空间进行分配,就会进行fullGC,这种情况下可以增大内存或者增大-XX:G1HeapRegionSize。 程序主动执行System.gc():不要随便写就对了。
jinfo -flag +HeapDumpAfterFullGC pid
`
超时
读写超时。readTimeout/writeTimeout,有些框架叫做so_timeout或者socketTimeout,均指的是数据读写超时。注意这边的超时大部分是指逻辑上的超时。soa的超时指的也是读超时。读写超时一般都只针对客户端设置。 连接超时。connectionTimeout,客户端通常指与服务端建立连接的最大时间。服务端这边connectionTimeout就有些五花八门了,jetty中表示空闲连接清理时间,tomcat则表示连接维持的最大时间。 其他。包括连接获取超时connectionAcquireTimeout和空闲连接清理超时idleConnectionTimeout。多用于使用连接池或队列的客户端或服务端框架。
TCP队列溢出
netstat -s | egrep "listen|LISTEN"
ss命令,执行ss -lnt
RST异常
端口不存在
主动代替FIN终止连接
TIME_WAIT和CLOSE_WAIT
netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'
来查看time-wait和close_wait的数量ss -ant | awk '{++S[$1]} END {for(a in S) print a, S[a]}'
TIME_WAIT
net.ipv4.tcp_tw_reuse = 1
#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭
net.ipv4.tcp_tw_recycle = 1
`
CLOSE_WAIT
最后给大家送下福利,大家可以关注Java核心技术公众号,在后台回复 “福利”可以获取一份我整理的最新Java面试题资料。
(END)
最近好文分享
Java 的 main 方法是 public static void?
更多请扫码关注 • Java核心技术