查看原文
其他

5亿整数的大文件,怎么排序 ?面试被问傻!

CSDN云计算 2020-10-16

来源 | 程序员追风

编辑 | Carol

出品| CSDN云计算(ID:CSDNcloud)


最近一家公司,面试官一上来,就问了我这么一个问题,我一脸懵逼,决定记录一下。



问题


给你1个文件bigdata,大小4663M,5亿个数,文件中的数据随机,如下一行一个整数:


61963023557681612158020393452095006174677379343122016371712330287901712966901...7005375


现在要对这个文件进行排序,怎么搞?



内部排序


先尝试内排,选2种排序方式。


3路快排:


private final int cutoff = 8;
public <T> void perform(Comparable<T>[] a) { perform(a,0,a.length - 1); }
private <T> int median3(Comparable<T>[] a,int x,int y,int z) {if(lessThan(a[x],a[y])) {if(lessThan(a[y],a[z])) {return y; }else if(lessThan(a[x],a[z])) {return z; }else {return x; } }else {if(lessThan(a[z],a[y])){return y; }else if(lessThan(a[z],a[x])) {return z; }else {return x; } } }
private <T> void perform(Comparable<T>[] a,int low,int high) {int n = high - low + 1;//当序列非常小,用插入排序if(n <= cutoff) { InsertionSort insertionSort = SortFactory.createInsertionSort(); insertionSort.perform(a,low,high);//当序列中小时,使用median3 }else if(n <= 100) {int m = median3(a,low,low + (n >>> 1),high); exchange(a,m,low);//当序列比较大时,使用ninther }else {int gap = n >>> 3;int m = low + (n >>> 1);int m1 = median3(a,low,low + gap,low + (gap << 1));int m2 = median3(a,m - gap,m,m + gap);int m3 = median3(a,high - (gap << 1),high - gap,high);int ninther = median3(a,m1,m2,m3); exchange(a,ninther,low); }
if(high <= low)return;//lessThanint lt = low;//greaterThanint gt = high;//中心点 Comparable<T> pivot = a[low];int i = low + 1;
/* * 不变式: * a[low..lt-1] 小于pivot -> 前部(first) * a[lt..i-1] 等于 pivot -> 中部(middle) * a[gt+1..n-1] 大于 pivot -> 后部(final) * * a[i..gt] 待考察区域 */
while (i <= gt) {if(lessThan(a[i],pivot)) {//i-> ,lt -> exchange(a,lt++,i++); }else if(lessThan(pivot,a[i])) { exchange(a,i,gt--); }else{ i++; } }
// a[low..lt-1] < v = a[lt..gt] < a[gt+1..high]. perform(a,low,lt - 1); perform(a,gt + 1,high); }


归并排序:



/** * 小于等于这个值的时候,交给插入排序 */private final int cutoff = 8;
/** * 对给定的元素序列进行排序 * * @param a 给定元素序列 */@Overridepublic <T> void perform(Comparable<T>[] a) { Comparable<T>[] b = a.clone(); perform(b, a, 0, a.length - 1); }
private <T> void perform(Comparable<T>[] src,Comparable<T>[] dest,int low,int high) {if(low >= high)return;
//小于等于cutoff的时候,交给插入排序if(high - low <= cutoff) { SortFactory.createInsertionSort().perform(dest,low,high);return; }
int mid = low + ((high - low) >>> 1); perform(dest,src,low,mid); perform(dest,src,mid + 1,high);
//考虑局部有序 src[mid] <= src[mid+1]if(lessThanOrEqual(src[mid],src[mid+1])) { System.arraycopy(src,low,dest,low,high - low + 1); }
//src[low .. mid] + src[mid+1 .. high] -> dest[low .. high] merge(src,dest,low,mid,high); }
private <T> void merge(Comparable<T>[] src,Comparable<T>[] dest,int low,int mid,int high) {
for(int i = low,v = low,w = mid + 1; i <= high; i++) {if(w > high || v <= mid && lessThanOrEqual(src[v],src[w])) { dest[i] = src[v++]; }else { dest[i] = src[w++]; } }    }


数据太多,递归太深 ->栈溢出?加大Xss?


数据太多,数组太长 -> OOM?加大Xmx?


耐心不足,没跑出来.而且要将这么大的文件读入内存,在堆中维护这么大个数据量,还有内排中不断的拷贝,对栈和堆都是很大的压力,不具备通用性。



sort命令来跑


跑了多久呢?24分钟。


为什么这么慢?

粗略的看下我们的资源:


内存 jvm-heap/stack,native-heap/stack,page-cache,block-buffer 外存 swap + 磁盘 数据量很大,函数调用很多,系统调用很多,内核/用户缓冲区拷贝很多,脏页回写很多,io-wait很高,io很繁忙,堆栈数据不断交换至swap,线程切换很多,每个环节的锁也很多。


总之,内存吃紧,问磁盘要空间,脏数据持久化过多导致cache频繁失效,引发大量回写,回写线程高,导致cpu大量时间用于上下文切换,一切,都很糟糕,所以24分钟不细看了,无法忍受。


位图法:

private BitSet bits;
public void perform( String largeFileName,int total, String destLargeFileName, Castor<Integer> castor,int readerBufferSize,int writerBufferSize, boolean asc) throws IOException {
System.out.println("BitmapSort Started.");long start = System.currentTimeMillis(); bits = new BitSet(total); InputPart<Integer> largeIn = PartFactory.createCharBufferedInputPart(largeFileName, readerBufferSize); OutputPart<Integer> largeOut = PartFactory.createCharBufferedOutputPart(destLargeFileName, writerBufferSize); largeOut.delete();
Integer data;int off = 0;try {while (true) { data = largeIn.read();if (data == null)break;int v = data;set(v); off++; } largeIn.close();int size = bits.size(); System.out.println(String.format("lines : %d ,bits : %d", off, size));
if(asc) {for (int i = 0; i < size; i++) {if (get(i)) { largeOut.write(i); } } }else {for (int i = size - 1; i >= 0; i--) {if (get(i)) { largeOut.write(i); } } }
largeOut.close();long stop = System.currentTimeMillis();long elapsed = stop - start; System.out.println(String.format("BitmapSort Completed.elapsed : %dms",elapsed)); }finally { largeIn.close(); largeOut.close(); } }
private void set(int i) { bits.set(i); }
private boolean get(int v) {return bits.get(v); }


nice!跑了190秒,3分来钟. 以核心内存4663M/32大小的空间跑出这么个结果,而且大量时间在用于I/O,不错。


问题是,如果这个时候突然内存条坏了1、2根,或者只有极少的内存空间怎么搞?



外部排序


该外部排序上场了,外部排序干嘛的?

内存极少的情况下,利用分治策略,利用外存保存中间结果,再用多路归并来排序;

map-reduce的嫡系。




1、分


内存中维护一个极小的核心缓冲区memBuffer,将大文件bigdata按行读入,搜集到memBuffer满或者大文件读完时,对memBuffer中的数据调用内排进行排序,排序后将有序结果写入磁盘文件bigdata.xxx.part.sorted. 循环利用memBuffer直到大文件处理完毕,得到n个有序的磁盘文件:



2、合


现在有了n个有序的小文件,怎么合并成1个有序的大文件?把所有小文件读入内存,然后内排?(⊙o⊙)… no!


利用如下原理进行归并排序:



我们举个简单的例子:







文件1:3,6,9文件2:2,4,8文件3:1,5,7
第一回合:文件1的最小值:3 , 排在文件1的第1行文件2的最小值:2,排在文件2的第1行文件3的最小值:1,排在文件3的第1行那么,这3个文件中的最小值是:min(1,2,3) = 1也就是说,最终大文件的当前最小值,是文件1、2、3的当前最小值的最小值,绕么?上面拿出了最小值1,写入大文件.
第二回合:文件1的最小值:3 , 排在文件1的第1行文件2的最小值:2,排在文件2的第1行文件3的最小值:5,排在文件3的第2行那么,这3个文件中的最小值是:min(5,2,3) = 2将2写入大文件.
也就是说,最小值属于哪个文件,那么就从哪个文件当中取下一行数据.(因为小文件内部有序,下一行数据代表了它当前的最小值)



最终的时间,跑了771秒,13分钟左右。

less bigdata.sorted.text...9999966999996799999689999969999997099999719999972999997399999749999975999997699999779999978...


就是这样,希望作者的经验能帮助到你面试时不会被问倒!


《原力计划【第二季】- 学习力挑战》

正式开始

即日起至 3月21日

千万流量支持原创作者

更有专属【勋章】等你来挑战




推荐阅读:真香,朕在看了!点击“阅读原文”,参与报名

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存