查看原文
其他

你公司的虚拟机还闲着?基于 Jenkins 和 Kubernetes 的持续集成测试实践了解一下!

刘春明 CSDN云计算 2020-10-29

作者 | 刘春明

责编 | Carol

出品 | CSDN 云计算(ID:CSDNcloud)

封图| CSDN下载于视觉中国

目前公司为了降低机器使用成本,对所有的AWS虚拟机进行了盘点,发现利用率低的机器中,有一部分是测试团队用作Jenkins Slave的机器。这不出我们所料,使用虚拟机作为Jenkins Slave,一定会存在很大浪费,因为测试Job运行完成后,Slave 处于空闲状态时,虚拟机资源并没有被释放掉。

除了资源利用率不高外,虚拟机作为Jenkins Slave还有其他方面的弊端,比如资源分配不均衡,有的 Slave 要运行的 job 出现排队等待,而有的 Slave 可能正处于空闲状态。另外,扩容不方便,使用虚拟机作为Slave,想要增加Jenkins Slave,需要手动挂载虚拟机到Jenkins Master上,并给Slave配置环境,导致管理起来非常不方便,维护起来也是比较耗时。

在2019年,运维团队搭建了Kubernetes容器云平台。为了实现公司降低机器使用成本的目标,我所在的车联网测试团队考虑将Jenkins Slave全面迁移到Kubernetes容器云平台。主要是想提高Jenkins Slave资源利用率,并且提供比较灵活的弹性扩容能力满足越来越多的测试Job对Slave的需求。

本文就是我们的实践总结。


整体架构


我们知道Jenkins是采用的Master-Slave架构,Master负责管理Job,Slave负责运行Job。在我们公司Master搭建在一台虚拟机上,Slave则来自Kubernetes平台,每一个Slave都是Kubernetes平台中的一个Pod,Pod是Kubernetes的原子调度单位,更多Kubernetes的基础知识不做过多介绍,在这篇文章中,大家只要记住Pod就是Jenkins Slave就行了。

基于 Kubernetes 搭建的 Jenkins Slave 集群示意图如下。

在这个架构中,Jenkins Master 负责管理测试Job,为了能够利用Kubernetes平台上的资源,需要在Master上安装Kubernetes-plugin。

Kubernetes平台负责产生Pod,用作Jenkins Slave执行Job任务。当Jenkins Master上有Job被调度时,Jenkins Master通过Kubernetes-plugin向Kubernetes平台发起请求,请Kubernetes根据Pod模板产生对应的Pod对象,Pod对象会向Jenkins Master发起JNLP请求,以便连接上Jenkins Master,一旦连接成功,就可以在Pod上面执行Job了。

Pod中所用的容器镜像则来自Harbor,在这里,一个Pod中用到了三个镜像,分别是Java镜像Python镜像JNLP镜像。Java镜像提供Java环境,可用来进行编译、执行Java编写的测试代码,Python镜像提供Python环境,用来执行Python编写的测试代码,JNLP镜像是Jenkins官方提供的Slave镜像。

使用Kubernetes作为Jenkins Slave,如何解决前面提到的使用虚拟机时的资源利用率低、资源分配不均的问题,并且实现Slave动态弹性扩容的呢?

首先,只有在Jenkins Master有Job被调度时,才会向Kubernetes申请Pod创建Jenkins Slave,测试Job执行完成后,所用的Slave会被Kubernetes回收。不会像虚拟机作为Slave时,有Slave闲置的情况出现,从而提高了计算资源的利用率。

其次,资源分配不均衡的主要问题在于不同测试小组之间,因为测试环境和依赖不同而不能共享Jenkins Slave。而Kubernetes平台打破了共享的障碍,只要Kubernetes集群中有计算资源,那么就可以从中申请到适合自己项目的Jenkins Slave,从而不再会发生Job排队的现象。

借助Kubernetes实现Slave动态弹性扩容就更加简单了。因为Kubernetes天生就支持弹性扩容。当监控到Kubernetes资源不够时,只需要通过运维平台向其中增加Node节点即可。对于测试工作来讲,这一步完全是透明的。


配置Jenkins Master


要想利用Kubernetes作为Jenkins Slave,第一步是在Jenkins Master上安装Kubernetes插件。安装方法很简单,用Jenkisn管理员账号登录Jenkins,在Manage Plugin页面,搜索Kubernetes,勾选并安装即可。

接下来就是在Jenkins Master上配置Kubernetes连接信息。Jenkins Master连接Kubernetes云需要配置三个关键信息:名称证书。全部配置信息如下图所示。

名称将会在Jenkins Pipeline中用到,配置多个Kubernetes云时,需要为每一个云都指定一个不同的名称。

Kubernetes地址指的是Kubernetes API server的地址,Jenkins Master正是通过Kubernetes plugin向这个地址发起调度Pod的请求。

Kubernetes服务证书key是用来与Kubernetes API server建立连接的,生成方法是,从Kubernetes API server的/root/.kube/config文件中,获取/root/.kube/config中certificate-authority-data的内容,并转化成base64 编码的文件即可。

# echo certificate-authority-data的内容 | base64 -D > ~/ca.crt

ca.crt的内容就是Kubernetes服务证书key。

上图中的凭据,是使用客户端的证书和key生成的pxf文件。先将/root/.kube/config中client-certificate-data和client-key-data的内容分别转化成base64 编码的文件。

# echo client-certificate-data的内容 | base64 -D > ~/client.crt
# echo client-key-data的内容 | base64 -D > ~/client.crt

根据这两个文件制作pxf文件:

# openssl pkcs12 -export -out ~/cert.pfx -inkey ~/client.key -in ~/client.crt -certfile ~/ca.crt
# Enter Export Password:
# Verifying - Enter Export Password:

自定义一个password并牢记。

点击Add,选择类型是Cetificate,点击Upload certificate,选取前面生成cert.pfx文件,输入生成cert.pfx文件时的密码,就完成了凭据的添加。

接着再配置一下Jenkins URL和同时可以被调度的Pod数量。

配置完毕,可以点击 “Test Connection” 按钮测试是否能够连接到 Kubernetes,如果显示 Connection test successful 则表示连接成功,配置没有问题。

配置完Kubernetes插件后,在Jenkins Master上根据需要配置一些公共工具,比如我这了配置了allure,用来生成报告。这样在Jenkins Slave中用到这些工具时,就会自动安装到Jenkins Slave中了。


定制Jenkins Pipeline


配置完成Kubernetes连接信息后,就可以在测试Job的Pipeline中使用kubernetes作为agent了。与使用虚拟机作为Jenkins Slave的区别主要在于pipeline.agent部分。下面代码是完整的Jenkinsfile内容。

pipeline {
    agent {
      kubernetes{
          cloud 'kubernetes-bj' //Jenkins Master上配置的Kubernetes名称
          label 'SEQ-AUTOTEST-PYTHON36' //Jenkins slave的前缀
          defaultContainer 'python36' // stages和post步骤中默认用到的container。如需指定其他container,可用语法 container("jnlp"){...}
          idleMinutes 10 //所创建的pod在job结束后的空闲生存时间
          yamlFile "jenkins/jenkins_pod_template.yaml" // pod的yaml文件
      }
    }
    environment {
        git_url = 'git@github.com:liuchunming033/seq_jenkins_template.git'
        git_key = 'c8615bc3-c995-40ed-92ba-d5b66'
        git_branch = 'master'
        email_list = 'liuchunming@163.com'
    }
    options {
        buildDiscarder(logRotator(numToKeepStr: '30'))  //保存的job构建记录总数
        timeout(time: 30, unit: 'MINUTES')  //job超时时间
        disableConcurrentBuilds() //不允许同时执行流水线
    }
    stages {
        stage('拉取测试代码') {
            steps {
                git branch: "${git_branch}", credentialsId: "${git_key}", url: "${git_url}"
            }
        }
        stage('安装测试依赖') {
            steps {
                sh "pipenv install"
            }
        }
        stage('执行测试用例') {
            steps {
                sh "pipenv run py.test"
            }
        }
    }
    post {
        always{
            container("jnlp"){ //在jnlp container中生成测试报告
                allure includeProperties: false, jdk: '', report: 'jenkins-allure-report', results: [[path: 'allure-results']]
            }   
        }
    }
}

上面的Pipeline中,与本文相关的核心部分是agent.kubernetes一段,这一段描述了如何在kubernetes 平台生成Jenkins Slave。

cloud,是Jenkins Master上配置的Kubernetes名称,用来标识当前的Pipeline使用的是哪一个Kubernetes cloud。

label,是Jenkins Slave名称的前缀,用来区分不同的Jenkins Slave,当出现异常时,可以根据这个名称到Kubernetes cloud中进行debug。

defaultContainer,在Jenkins Slave中我定义了是三个container,在前面有介绍。defaultContainer表示在Pipeline中的stages和post阶段,代码运行的默认container。也就是说,如果在stages和post阶段不指定container,那么代码都是默认运行在defaultContainer里面的。如果要用其他的container运行代码,则需要通过类似container(“jnlp”){…}方式来指定。

idleMinutes,指定了Jenkins Slave上运行的测试job结束后,Jenkins Slave可以保留的时长。在这段时间内,Jenkins Slave不会被Kubernetes回收,这段时间内如果有相同label的测试Job被调度,那么可以继续使用这个空闲的Jenkins Slave。这样做的目的是,提高Jenkins Slave的利用率,避免Kubernetes进行频繁调度,因为成功产生一个Jenkins Slave还是比较耗时的。

yamlFile,这个文件是标准的Kubernetes的Pod 模板文件。Kubernetes根据这个文件产生Pod对象,用来作为Jenkins Slave。这个文件中定义了三个容器(Container)以及调度的规则和外部存储。这个文件是利用Kubernetes作为Jenkins Slave集群的核心文件,下面将详细介绍这个文件的内容。

至此,测试Job的Pipeline就建立好了。


定制Jenkins Slave模板


使用虚拟机作为Jenkins Slave时,如果新加入一台虚拟机,我们需要对虚拟机进行初始化,主要是安装工具软件、依赖包,并连接到Jenkins Master上。使用Kubernetes cloud作为Jenkins Slave集群也是一样,要定义Jenkins Slave使用的操作系统、依赖软件和外部磁盘等信息。只不过这些信息被写在了一个Yaml文件中,这个文件是Kubernetes的Pod 对象的标准模板文件。Kubernetes会自根据这个Yaml文件,产生Pod并连接到Jenkins Master上。

这个Yaml文件内容如下:

apiVersion: v1
kind: Pod
metadata:
  # ① 指定 Pod 将产生在Kubernetes的哪个namespace下,需要有这个namespace的权限
  namespace: sqe-test  
spec:
  containers:
    # ② 必选,负责连接Jenkins Master,注意name一定要是jnlp
    - name: jnlp
      image: swc-harbor.nioint.com/sqe/jnlp-slave:root_user
      imagePullPolicy: Always
      # 将Jenkins的WORKSPACE(/home/jenkins/agent)挂载到jenkins-slave
      volumeMounts:
        - mountPath: /home/jenkins/agent
          name: jenkins-slave

    # ③ 可选,python36环境,已安装pipenv,负责执行python编写的测试代码
    - name: python36
      image: swc-harbor.nioint.com/sqe/automation_python36:v1
      imagePullPolicy: Always
      # 通过cat命令,让这个container保持持续运行
      command:
        - cat
      tty: true
      env:
        # 设置pipenv的虚拟环境路径变量 WORKON_HOME
        - name: WORKON_HOME 
          value: /home/jenkins/agent/.local/share/virtualenvs/
      # 创建/home/jenkins/agent目录并挂载到jenkins-slave Volume上
      volumeMounts: 
        - mountPath: /home/jenkins/agent
          name: jenkins-slave
      # 可以对Pod使用的资源进行限定,可调。尽量不要用太多,够用即可。
      resources: 
        limits:
          cpu: 300m
          memory: 500Mi

    # ④ 可选,Java8环境,已安装maven,负责执行Java编写的测试代码
    - name: java8
      image: swc-harbor.nioint.com/sqe/automation_java8:v2
      imagePullPolicy: Always
      command:
        - cat
      tty: true
      volumeMounts:
        - mountPath: /home/jenkins/agent
          name: jenkins-slave

  # ⑤ 声明一个名称为 jenkins-slave 的 NFS Volume,多个container共享
  volumes:
    - name: jenkins-slave
      nfs:
        path: /data/jenkins-slave-nfs/
        server: 10.125.234.64
  # ⑥ 指定在Kubernetes的哪些Node节点上产生Pod
  nodeSelector:
    node-app: normal
    node-dept: sqe

通过上面的Yaml文件,可以看到通过 spec.containers 在Pod中定义了三个容器,分别是负责连接Jenkins Master的jnlp,负责运行Python代码的python36,负责运行Java代码的java8。我们可以把Jenkins Slave比喻成豆荚,里面的容器比喻成豆荚中的豆粒,每颗豆粒具有不同的职责。

同时,还声明了一个叫作jenkins-slave 的volume,jnlp 容器将Jenkins WORKSPACE目录(/home/jenkins/agent )mount到jenkins-slave 上。同时python36和java8这两个容器也将目录/home/jenkins/agent mount到jenkins-slave 上。从而,在任何一个容器中对/home/jenkins/agent 目录的修改,在其他两个容器中都能读取到修改后的内容。挂载外部存储的主要好处是可以将测试结果、虚拟环境持久化下来,特别是将虚拟环境持久化下来之后,不用每次执行测试创建新的虚拟环境,而是复用已有的虚拟环境,加快了整个测试执行的过程。

另外,还指定了使用kubernetes的哪一个Namespace命名空间以及在哪些Node节点上产生Jenkins Slave。关于这个Yaml文件的其他细节说明,我都写在了文件的注释上,大家可以参考着理解。


定制容器镜像


前面介绍了Jenkins Slave中用到了三个容器,下面我们分别来看下这三个容器的镜像。

首先,DockerHub(https://hub.docker.com/r/jenkinsci/jnlp-slave)提供了Jenkins Slave的官方镜像,我们这里将官方镜像中的默认用户切换成root用户,否则在执行测试用例时,可能会出现权限问题。JNLP容器镜像的Dockerfile如下:

FROM jenkinsci/jnlp-slave:latest
LABEL maintainer="liuchunming@163.com"
USER root

Python镜像是在官方的Python3.6.4镜像中安装了pipenv。因为我们团队目前的Python项目都是用pipenv管理项目依赖的。这里说一下,pipenv是pip的升级版,它既能为你项目创建独立的虚拟环境,还能够自动维护和管理项目的依赖软件包。与pip使用requirements.txt管理依赖不同,pipenv使用Pipefile管理依赖,这里的好处不展开介绍,有兴趣的朋友可以查看一下pipenv的官方文档https://github.com/pypa/pipenv。Python镜像的Dockerfile如下:

FROM python:3.6.4
LABEL maintainer="xxx@163.com"
USER root
RUN pip install --upgrade pip
RUN pip3 install pipenv

Java镜像是根据DockerHub上的maven镜像扩展来的。主要改动则是将公司内部使用的maven配置文件settings.xml放到镜像里面。完整的Dockerfile如下:

FROM maven:3.6.3-jdk-8
LABEL maintainer="xxx@163.com"
USER root

# 设置系统时区为北京时间
RUN mv /etc/localtime /etc/localtime.bak && \
    ln -s /usr/share/zoneinfo/Asia/Shanghai  /etc/localtime && \
    echo "Asia/Shanghai" > /etc/timezone # 解决JVM与linux系统时间不一致问题
# 支持中文
RUN apt-get update && \
    apt-get install locales -y && \
    echo "zh_CN.UTF-8 UTF-8" > /etc/locale.gen && \
    locale-gen
# 更新资源地址
ADD settings.xml /root/.m2/

# 安装jacococli
COPY jacoco-plugin/jacococli.jar  /usr/bin
RUN  chmod +x /usr/bin/jacococli.jar

制作完容器镜像之后,我们会将其push到公司内部的harbor上,以便kubernetes能够快速的拉取镜像。大家可以根据自己实际情况,按照项目需求制作自己的容器镜像。


执行自动化测试


通过前面的步骤,我们使用Kubernetes作为Jenkins Slave的准备工作就全部完成了。接下来就是执行测试Job了。与使用虚拟机执行测试Job相比,这一步其实完全相同。

创建一个Pipeline风格的Job,并进行如下配置:

配置完成后,点击Build就可以开始测试了。


性能优化


跟虚拟机作为Jenkins Salve不同,Kubernetes生成Jenkins Slave是个动态创建的过程,因为是动态创建,就涉及到效率问题。解决效率问题可以从两方面入手,一方面是尽量利用已有的Jenkins Slave来运行测试Job,另一方面是加快产生Jenkins Slave的效率。下面我们分别从这两方面看看具体的优化措施。

7.1 充分利用已有的Jenkins Slave

充分利用已有的Jenkins Slave,可以从两方面入手。

一方面,设置idleMinutes让Jenkins Slave在执行完测试Job后,不要被立即消毁,而是可以空闲一段时间,在这段时间内如果有测试Job启动,则可以分配到上面来执行,既提高了已有的Jenkins Slave的利用率,也避免创建Jenkins Slave耗费时间。

另一方面,在更多的测试Job流水线中,使用相同的label,这样当前面的测试Job结束后,所使用的Jenkins Slave也能被即将启动的使用相同lable的测试Job所使用。比如,测试job1使用的jenkins Slave 的lable是

DD-SEQ-AUTOTEST-PYTHON,那么当测试job1结束后,使用相同lable的测试job2启动后,既可以直接使用测试job1使用过的Jenkins Slave了。

7.2 加快Jenkins Slave的调度效率

Kubernetes上产生Jenkins Slave并加入到Jenkins Master的完整流程是:

  • Jenkins Master计算现在的负载情况;

  • Jenkins Master根据负载情况,按需通过Kubernetes Plugin向Kubernetes API server发起请求;

  • Kubernetes API server向Kubernetes集群调度Pod;

  • Pod产生后通过JNLP协议自动连接到Jenkins Master。

后三个步骤都是很快的,主要受网络影响。而第一个步骤,Jenkins Master会经过一系列算法计算之后,发现没有可用的Jenkins Slave才决定向Kubernetes API server发起请求。这个过程在Jenkins Master的默认启动配置下是不高效的。经常会导致一个新的测试Job启动后需要等一段时间,才开始在Kubernetes上产生Pod。

因此,需求对Jenkins Master的启动项进行修改,主要涉及以下几个参数:

-Dhudson.model.LoadStatistics.clock=2000 
-Dhudson.slaves.NodeProvisioner.recurrencePeriod=5000 
-Dhudson.slaves.NodeProvisioner.initialDelay=0 
-Dhudson.model.LoadStatistics.decay=0.5 
-Dhudson.slaves.NodeProvisioner.MARGIN=50 
-Dhudson.slaves.NodeProvisioner.MARGIN0=0.85

Jenkins Master每隔一段时间会计算集群负载,时间间隔由hudson.model.LoadStatistics.clock决定,默认是10秒,我们将其调整到2秒,以加快 Master计算集群负载的频率,从而更快的知道负载的变化情况。比如原来最快需要10秒才知道目前有多少job需要被调度执行,现在只需要2秒。

当Jenkins Master计算得到集群负载后,发现没有可用的Jenkins Slave。Jenkins master会通知Kubernetes Plugin的NodeProvisioner以recurrencePeriod间隔生产Pod。因此recurrencePeriod值不能比hudson.model.LoadStatistics.clock小,否则会生成多个Jenkins slave。

initialDelay是一个延迟时间,原本用于确保让静态的Jenkins Slave和Master建立起来连接,因为我们这里是使用Kubernetes插件动态产生Jenkins slave,没有静态Jenkins Slave,所以我们将参数设置成0。

hudson.model.LoadStatistics.decay这个参数原本的意义是用于抑制评估master负载的抖动,对于评估得到的负载值有很大影响。默认decay是0.9。我们把decay设成了0.5,允许负载有比较大的波动,Jenkins Master评估的负载就是在当前尽可能真实的负载之上,评估的需要的Jenkins Slave的个数。

hudson.slaves.NodeProvisioner.MARGIN 和hudson.slaves.NodeProvisioner.MARGIN0,这两个参数使计算出来的负载做整数向上对齐,从而可能多产生一个Slave,以此来提高效率。

将上面的参数,加入到Jenkins Mater启动进程上,重启Jenkins Master即生效。

java -Dhudson.model.LoadStatistics.clock=2000 -Dxxx -jar jenkins.war


总结


本文介绍了使用Kubernetes作为持续集成测试环境的优势,并详细介绍了使用方法,对其性能也进行了优化。通过这个方式完美解决虚拟机作为Jenkins Slave的弊端。

除了自动化测试能够从Kubernetes中收益之外,在性能测试环境搭建过程中,借助Kubernetes动态弹性扩容的机制,对于大规模压测集群的创建,在效率、便捷性方面更具有明显优势。

作者介绍:

刘春明,软件测试技术布道者,十年测试老兵,CSDN博客专家,MSTC大会讲师,ArchSummit讲师,运营“明说软件测试”公众号。擅长测试框架开发、测试平台开发、持续集成、测试环境治理等,熟悉服务端测试、APP测试、Web测试和性能测试。

同时,欢迎所有开发者扫描下方二维码填写《开发者与AI大调研》,只需2分钟,便可收获价值299元的「AI开发者万人大会」在线直播门票!

推荐阅读:


真香,朕在看了!

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存