查看原文
其他

三年级知识点:找简单数列的规律

smartkids123 小学语数外 2021-04-29

找简单数列的规律

  日常生活中,我们经常接触到许多按一定顺序排列的数,如:

  自然数:1,2,3,4,5,6,7,… (1)

  年份:1990,1991,1992,1993,1994,1995,1996 (2)

  某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)

  45,45,44,46,45 (3)

  像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。


  根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。


  研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律。


例1 观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.

  ①2,5,8,11,(),17,20。

  ②19,17,15,13,(),9,7。

  ③1,3,9,27,(),243。

  ④64,32,16,8,(),2。

  ⑤1,1,2,3,5,8,(),21,34…

  ⑥1,3,4,7,11,18,(),47…

  ⑦1,3,6,10,(),21,28,36,().

  ⑧1,2,6,24,120,(),5040。

  ⑨1,1,3,7,13,(),31。

  ⑩1,3,7,15,31,(),127,255。

  (11)1,4,9,16,25,(),49,64。

  (12)0,3,8,15,24,(),48,63。

  (13)1,2,2,4,3,8,4,16,5,().

  (14)2,1,4,3,6,9,8,27,10,().

分析与解答

  ①不难发现,从第2项开始,每一项减去它前面一项所得的差都等于3.因此,括号中应填的数是14,即:11+3=14。


  ② 同①考虑,可以看出,每相邻两项的差是一定值2.所以,括号中应填11,即:13—2=11。

  不妨把①与②联系起来继续观察,容易看出:数列①中,随项数的增大,每一项的数值也相应增大,即数列①是递增的;数列②中,随项数的增大,每一项的值却依次减小,即数列②是递减的.但是除了上述的不同点之外,这两个数列却有一个共同的性质:即相邻两项的差都是一个定值.我们把类似①②这样的数列,称为等差数列.


  ③1,3,9,27,(),243。

  此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3, 27=9×3.因此,括号中应填 81,即 81= 27×3,代入后, 243也符合规律,即 243=81×3。


  ④64,32,16,8,(),2

  与③类似,本题中,从第1项开始,每一项是其后面一项的2倍,即:

  因此,括号中填4,代入后符合规律。

  综合③④考虑,数列③是递增的数列,数列④是递减的数列,但它们却有一个共同的特点:每列数中,相邻两项的商都相等.像③④这样的数列,我们把它称为等比数列。


  ⑤ 1, 1, 2, 3, 5, 8,( ), 21, 34…

  首先可以看出,这个数列既不是等差数列,也不是等比数列.现在我们不妨看看相邻项之间是否还有别的关系,可以发现,从第3项开始,每一项等于它前面两项的和.即2=1+1,3=2+1,5=2+3,8=3+5.因此,括号中应填的数是 13,即 13=5+8, 21=8+13, 34=13+21。

  这个以1,1分别为第1、第2项,以后各项都等于其前两项之和的无穷数列,就是数学上有名的斐波那契数列,它来源于一个有趣的问题:如果一对成熟的兔子一个月能生一对小兔,小兔一个月后就长成了大兔子,于是,下一个月也能生一对小兔子,这样下去,假定一切情况均理想的话,每一对兔子都是一公一母,兔子的数目将按一定的规律迅速增长,按顺序记录每个月中所有兔子的数目(以对为单位,一月记一次),就得到了一个数列,这个数列就是数列⑤的原型,因此,数列⑤又称为兔子数列,这些在高年级递推方法中我们还要作详细介绍。


  ⑥1, 3, 4, 7, 11, 18,( ),47…

  在学习了数列⑤的前提下,数列⑥的规律就显而易见了,从第3项开始,每一项都等于其前两项的和.因此,括号中应填的是29,即 29=11+18。

  数列⑥不同于数列⑤的原因是:数列⑥的第2项为3,而数列⑤为1,数列⑥称为鲁卡斯数列。


  ⑦1,3,6,10,( ), 21, 28, 36,( )。

方法1:继续考察相邻项之间的关系,可以发现:

  因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确。

方法2:其实,这一列数有如下的规律:

  第1项:1=1

  第2项:3=1+2

  第3项:6=1+2+3

  第4项:10=1+2+3+4

  第5项:( )

  第6项:21=1+2+3+4+5+6

  第7项:28=1+2+3+4+5+6+7

  第8项;36=1+2+3+4+5+6+7+8

  第9项:( )

  即这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,

  第五项为15,即:15= 1+ 2+ 3+ 4+ 5;

  第九项为45,即:45=1+2+3+4+5+6+7+8+9。


  ⑧1,2,6,24,120,( ),5040。

方法1:这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:

  所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即 720=120×6。

方法2:受⑦的影响,可以考虑连续自然数,显然:

  第1项 1=1

  第2项 2=1×2

  第3项 6=1×2×3

  第4项 24=1×2×3×4

  第5项 120=1×2×3×4×5

  第6项 ( )

  第7项 5040=1×2×3×4×5×6×7

  所以,第6项应为 1×2×3×4×5×6=720


  ⑨1,1,3,7,13,( ),31

  与⑦类似:

  可以猜想,数列⑨的规律是该项=前项+2×(项数-2)(第1项除外),那么,括号中应填21,代入验证,符合规律。


  ⑩1,3,7,15,31,( ),127,255。

  因此,括号中的数应填为63。


小结:寻找数列的规律,通常从两个方面来考虑:①寻找各项与项数间的关系;②考虑相邻项之间的关系.然后,再归纳总结出一般的规律。


  事实上,数列⑦或数列⑧的两种方法,就是分别从以上两个不同的角度来考虑问题的.但有时候,从两个角度的综合考虑会更有利于问题的解决.因此,仔细观察,认真思考,选择适当的方法,会使我们的学习更上一层楼。

  在⑩题中,1=2-1

  3=22-1

  7=23-1

  15=24-1

  31=25-1

  127=27-1

  255=28-1

  所以,括号中为26-1即63。


  (11)1,4,9,16,25,( ),49,64.

  1=1×1, 4=2×2, 9=3×3, 16=4×4, 25=5×5,49= 7×7,64=8×8,即每项都等于自身项数与项数的乘积,所以括号中的数是36。

  本题各项只与项数有关,如果从相邻项关系来考虑问题,势必要走弯路。


  (12)0,3,8,15,24,( ), 48, 63。

  仔细观察,发现数列(12)的每一项加上1正好等于数列(11),因此,本数列的规律是项=项数×项数-1.所以,括号中填35,即 35= 6×6-1。


  (13)1, 2, 2, 4, 3, 8,4, 16, 5,( )。

  前面的方法均不适用于这个数列,在观察的过程中,可以发现,本数列中的某些数是很有规律的,如1,2,3,4,5,而它们恰好是第1项、第3项、第5项、第7项和第9项,所以不妨把数列分为奇数项(即第1,3,5,7,9项)和偶数项(即第2,4,6,8项)来考虑,把数列按奇数和偶数项重新分组排列如下:

  奇数项:1,2,3,4,5

  偶数项:2,4,8,16 可以看出,奇数项构成一等差数列,偶数项构成一等比数列.因此,括号中的数,即第10项应为32(32=16×2)。

  (14) 2, 1, 4, 3, 6, 9, 8, 27, 10,( )。

  同上考虑,把数列分为奇、偶项:

  偶数项:2,4,6,8,10

  奇数项:1,3,9,27,( ).所以,偶数项为等差数列,奇数项为等比数列,括号中应填81(81=27×3)。

  像(13)(14)这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列。


例2 下面数列的每一项由3个数组成的数组表示,它们依次是:

  (1,3,5),(2,6,10),(3,9,15)…问:第100个数组内3个数的和是多少?

  方法1:注意观察,发现这些数组的第1个分量依次是:1,2,3…构成等差数列,所以第 100个数组中的第 1个数为100;这些数组的第2个分量 3,6,9…也构成等差数列,且3=3×1,6=3×2,9=3×3,所以第100个数组中的第2个数为3×100=300;同理,第3个分量为5×100=500,所以,第100个数组内三个数的和为100+300+500=900。

  方法2:因为题目中问的只是和,所以可以不去求组里的三个数而直接求和,考察各组的三个数之和。

  第1组:1+3+5=9,第2组:2+6+10=18

  第3组:3+ 9+ 15= 27…,由于9=9×1,18= 9×2,27= 9×3,所以9,18,27…构成一等差数列,第100项为9×100=900,即第100个数组内三个数的和为900。


例3 按下图分割三角形,即:①把三角形等分为四个相同的小三角形(如图(b));②把①中的小三角形(尖朝下的除外)都等分为四个更小的三角形(如图(C))…继续下去,将会得到一系列的图,依次把这些图中不重叠的三角形的个数记下来,成为一个数列:1,4,13,40…请你继续按分割的步骤,以便得到数列的前5项.然后,仔细观察数列,从中找出规律,并依照规律得出数列的第10项,即第9项分割后所得的图中不重叠的小三角形的个数.

  分析与解答:

  第4次分割后的图形如左图:

  因此,数列的第5项为121。

  这个数列的规律如下:

  第1项1

  第2项4=1+3

  第3项13=4+3×3

  第4项40=13+3×3×3

  第5项121=40+3×3×3×3

  或者写为:第1项 1=1

  第2项4=1+31

  第3项13=1+3+32

  第4项 40=1+3+32+33

  第 5项 121=1+3+32+33+34

  因此,第10项也即第9次分割后得到的不重叠的三角形的个数是29524。


例4 在下面各题的五个数中,选出与其他四个数规律不同的数,并把它划掉,再从括号中选一个合适的数替换。

  ①42,20,18,48,24

  (21,54,45,10)

  ②15,75,60,45,27

  (50,70,30,9)

  ③42,126,168,63,882

  (27,210,33,25)


解:①中,42、18、48、24都是6的倍数,只有20不是,所以,划掉20,用54代替。

  ② 15、 75、 60、 45都是 15的整数倍数,而 27不是,用30来替换27。

  ③同上分析,发现这些数中, 42、 126、 128、 882都是42的整数倍,而63却不是.因此,用210来代替63。

微店新上架小升初英语、语文考点精讲、小学奥数课程,点击下面“阅读原文”查看。


学语数外,下资料,上网课,分享智慧教育。

扫描右图二维码轻松关注



欢迎家长 转载、分享 ,供更多孩子们学习

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存