查看原文
其他

人教版五年级下册数学知识点预习和复习重点

smartkids123 小学语数外 2021-04-29


语数外,下资料,上网课,分享智慧教育,关注小学语数外(ID:smartkids123)后进入“学习资料”菜单查看获取方法!

知识点预习

第一单元 图形的变换

图形变换的基本方式是平移对称旋转


1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……

等腰三角形有1条对称轴,

等边三角形有3条对称轴,

长方形有2条对称轴,

正方形有4条对称轴,

等腰梯形有1条对称轴,

任意梯形和平行四边形不是轴对称图形。

2)圆有无数条对称轴。

3对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:

①对应点到对称轴的距离相等;

②对应点的连线与对称轴垂直;

③对称轴两边的图形大小、形状完全相同。

(5)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

1)生活中的旋转:电风扇、车轮、纸风车

(2)旋转要明确绕点,角度和方向。

3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

旋转的性质

1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

(2)其中对应点到旋转中心的距离相等;

3)旋转前后图形的大小和形状没有改变;

4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

5)旋转中心是唯一不动的点。


3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

第二单元 因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数

例:126的倍数,612的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。


4235的倍数特征

1) 个位上是0,2,4,6,8的数都是2的倍数

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。


3完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数

如:6的因数有:1236除外),刚好1+2+3=6,所以6是完全数,小的完全数有628

4:自然数按能不能被2整除来分:奇数、偶数

奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.

关系: 奇数+、- 偶数=奇数

奇数+、- 奇数=偶数

偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1、0四类.


质数(或素数)只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1 只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个2、3、5、7、11、13、17、19

100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97


100以内找质数、合数的技巧:

看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数

质数×质数=合数

6最大、最小

A的最小因数是:1

A的最大因数是:A

A的最小倍数是:A

最小的自然数是:0


最小的奇数是:1

最小的偶数是:0

最小的质数是:2;

最小的合数是:4;


7、分解质因数:把一个合数分解成多个质数相乘的形式。

短除法分解质因数 (一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2×3×5

8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7

两个合数的互质数:8和9

一质一合的互质数:7和8

两数互质的特殊情况

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;

⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

9、公因数、最大公因数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

10、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数

短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

11、求最大公因数和最小公倍数方法

用12和16来举例

1、求法一:(列举求同法)

最大公因数的求法:

12的因数有:1、12、2、6、3、4

16的因数有:1、16、2、8、4

最大公因数是4

最小公倍数的求法:

12的倍数有:12、24、36、48、…

16的倍数有:16、32、48、…

最小公倍数是48

2、求法二:(分解质因数法)

12=2×2×3

16=2×2×2×2

最大公因数是:

2×2=4(相同乘)

最小公倍数是:

2×2×3×2×2= 48(相同乘×不同乘)

第三单元 长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。


2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体


不同点

长方体

都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

b=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b


正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4长方体或正方体6个面和总面积叫做它的表面积

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)


无底(或无盖)

长方体表面积长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab


无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)


贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)


注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。


(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积

长方体的体积=长×宽×高 V=abh

=体积÷宽÷高 a=V÷b÷h

=体积÷长÷高 b=V÷a÷h

=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a = a3

读作“a的立方”表示3a相乘,(即a·a·a

长方体或正方体底面的面积叫做底面积

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。


注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。


6箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

*形状不规则的物体可以用排水法求体积形状规则的物体可以用公式直接求体积

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S×(h现在- h原来)

V物体 =S×h升高

8、【体积单位换算   

大单位×进率=小单位

小单位÷进率=大单位

进率:1立方米1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=11000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米


注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位×进率=小单位

小单位÷进率=大单位

长度单位

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100


质量单位:

1=1000千克

1千克=1000克 

币:

1=10 1=10 1=100

第四单元 分数的意义和性质

1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。


2单位“1一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)


3分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。


4、分数与除法

A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/5


5、真分数和假分数、带分数

1、真分数:分子比分母小的分数叫真分数。真分数<1。

2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1

3、带分数:带分数由整数和真分数组成的分数。带分数>1.

4、真分数<1≤假分数

真分数<1<带分数


6、假分数与整数、带分数的互化


(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:


(2)整数化为假分数,用整数乘以分母得分子 如:


(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:


(4)1等于任何分子和分母相同的分数。如:


7、分数的基本性质:

分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。


8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。


一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。

9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

如:24/30=4/5


10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

如:2/5和1/4 可以化成8/20和5/20


11、分数和小数的互化

(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……


如:

0.3=3/10 0.03=3/100 0.003=3/1000


2)分数化为小数:

方法一:把分数化为分母是10、100、1000……

如:3/10=0.3 3/5=6/10=0.6

1/4=25/100=0.25

方法二:用分子÷分母

如:3/4=3÷4=0.75


(3)带分数化为小数:

先把整数后的分数化为小数,再加上整数


12、比分数的大小:


分母相同,分子大,分数就大;

分子相同,分母小,分数才大。


分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。


13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

1/2=0.5 1/4=0.25 3/4=0.75

1/5=0.2 2/5=0.4 3/5=0.6

4/5=0.8

1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04


14、两个数互质的特殊判断方法:

① 1和任何大于1的自然数互质。

② 2和任何奇数都是互质数。

③ 相邻的两个自然数是互质数。

④ 相邻的两个奇数互质。

⑤ 不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。


15、求最大公因数的方法:

① 倍数关系:最大公因数就是较小数。

② 互质关系:最大公因数就是1

③ 一般关系:从大到小看较小数的因数是否是较大数的因数。


16、分数知识图解:


第五单元 分数的加减法

1分数数的加法和减法

1 同分母分数加、减法 (分母不变,分子相加减)

(2) 异分母分数加、减法 (通分后再加减)

(3) 分数加减混合运算:同整数。

(4) 结果要是最简分数


2、带分数加减法:

带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

附:具体解释

(一)同分母分数加、减法

1、同分母分数加、减法:

同分母分数相加、减,分母不变,只把分子相加减。

2、计算的结果,能约分的要约成最简分数。

(二)异分母分数加、减法

1、分母不同,也就是分数单位不同,不能直接相加、减。

2、异分母分数的加减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

(三)分数加减混合运算

1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

2、整数加法的交换律、结合律对分数加法同样适用。


第六单元 统计与数学广角


1、众数: 一组数据中出现次数最多的一个数或几个数,就是这组数据的众数


众数能够反映一组数据的集中情况。

在一组数据中,众数可能不止一个,也可能没有众数。


2中位数:

1)按大小排列;

2)如果数据的个数是单数,那么最中间的那个数就是中位数;

(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。


3平均数的求法:

总数÷总份数=平均数


4、一组数据的一般水平:

1当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

2当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

5、平均数、中位数和众数的联系与区别:
① 平均数:
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
容易受极端数据的影响,表示一组数据的平均情况。
② 中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
它不受极端数据的影响,表示一组数据的一般情况。
③ 众数:
在一组数据中出现次数最多的数叫做这组数据的众数。
它不受极端数据的影响,表示一组数据的集中情况。


5、统计图:我们学过——条形统计图、复式折线统计图。

条形统计图优点:条形统计图能形象地反映出数量的多少。

折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

注:① 画图时注意:

一“点”(描点)、 二“连”(连线)、三“标”(标数据)。

②要用不同的线段分别连接两组数据中的数。


6、 打电话:

规律——人人不闲着,每人都在传。(技巧:已知人数依次 × 2)

(1)逐个法:所需时间最多。

(2)分组法:相对节约时间。

(3)同时进行法:最节约时间。

复习重点

第一单元  观察物体(三)


一、根据从不同角度看到的形状还原立体图形的方法:根据从三个不同方向看到的形状还原立体图形,先从一个方向看到的形状分析,推测可能出现的各种情况;再结合从其他两个方向看到的形状综合分析;最后确定立体图形。

二、(请注意!)仅凭从一个角度看到的立体图形的形状,不能确定这个立体图形的唯一形状,更无法确定组成这个立体图形的小正方体的个数。

三、观察图形最多只能看到3个面(正面、上面、左或右面),至少可看1个面。

 

第二单元  因数与倍数

一、因数和倍数

因数、倍数的意义

1、在整数除法中,如果商是整数而没有余数,那么被除数就是除数和商的倍数,除数和商是被除数的因数。

2、字母表示:如果a÷b=c(a,b,c是非0自然数),那么b、c是a的因数,a就是b、c的倍数。

找一个数的因数

1、找一个数的因数的方法

①列除法算式找。用此数分别除以大于等于1且小于等于它本身的所有整数,所得的商是整数且无余数,这些除数和商就是这个数的因数。

②列乘法算式找。把这个数写成两个整数相乘的形式,算式中的每个整数都是这个数的因数。

2、表示一个数的因数的方法:①列举法;②集合法。

3、一个数的因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

找一个数的倍数

1、找一个数的倍数的方法

①列除法算式找,看到哪些非0自然数除以这个数商是整数且没有余数,这个数都是这个数的倍数。

②列乘法算式找,用这个数依次与非0自然数相乘,所得的积就是这个数的倍数。

2、一个数的倍数的表示方法:①列举法;②集合法。

3、一个数的倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

4、(请注意)不要认为一个较大数的因数的个数就比一个较小数的倍数的个数多。一个数的因数的个数都是有限的,而一个数的倍数的个数却是无限的。1是所以非0自然数的因数。

5、(请注意)在一定的范围内找一个数的倍数时,这个数的倍数的个数就是有限的,在表示时不用加省略号。

二、2、5、3的倍数的特征

2、5的倍数的特征

1、个位上是0或5的数都是5的倍数。

2、个位上是0,2,4,6,8的数都是2的倍数。

3、在整数中,是2的倍数的数叫做偶数,0也是偶数;不是2的倍数的数叫做奇数。

3的倍数的特征

1、一个数各位上的数的和是3的倍数,这个数就是3的倍数。

(请注意)同时是2、5、3的倍数的特征:个位上是0且各位上的数的和是3的倍数。是9的倍数一定是3的倍数,而是3 的倍数不一定是9的倍数。

三、质数和合数

质数和合数

1、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

2、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

3、1既不是质数,也不是合数。最小的质数是2,最小的合数是4。

(请注意)质数中只有2是偶数,2是唯一的偶质数。除2外,其他质数都是奇数;但奇数不完全是质数。例如:9虽然是奇数,但它不是质数。

(请注意)偶数和合数之间有一定的联系:除2外,所有的偶数都是合数;但合数不完全是偶数。例如:45虽然是合数,但它不是偶数。

100以内的25个质数是:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

奇数和偶数的运算性质

1、和差的奇偶性:奇数±奇数=偶数;奇数±偶数=奇数(大数减小数);偶数±偶数=偶数。

2、积的奇偶性:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数。

 

 

第三单元  长方体和正方体

一、长方体和正方体的认识

1、长方体的特征:长方体是由6个长方形(特殊情况下有2个相对的面是正方形)围成的立体图形;一个长方形有6个面、8个定点和12条棱;相对的面完全相同,相对的棱长长度相等。w    W w .x K  b 1.c  o M

2、长方体长、宽、高的含义:相交于同一定点的三条棱长的长度分别叫做长方体的长、宽、高。长方体的12条棱中有4条长、4条宽、4条高。

3、正方体的特征:正方体是由6个完全相同的正方形围成的立体图形。正方体有6个面、12条棱和8个顶点,6个面完全相同,12条棱的长度都相等。

4、长方体和正方体的关系(正方体是特殊的长方体)

从面、棱、顶点三方面比较长方体和正方体的异同

 

长方体

正方体

相同点

都有6个面、12条棱和8个顶点。

不同点

6个面都是长方形(特殊情况下有2个相对的面是正方形),相对的面完全相同。

6个面都是完全相同的正方形。

每一组互相平行的4条棱的长度相等。

12条棱的长度都相等。

 

二、长方体和正方体的表面积X K b 1.C om

1、长方体和正方体表面积的意义:长方体或正方体6个面的总面积,叫做它的表面积。

2、长方体表面积的计算公式:

①长方体的表面积=长×宽×2+长×高×2+宽×高×2

②长方体的表面积=(长×宽+长×高+宽×高)×2

3、长方体表面积的字母公式:

①S=2ab+2ah+2bh               ②S=(ab+ah+bh)×2

(注意:S表示长方体的表面积,a、b、h分别表示长方体的长、宽、高)

4、正方体表面积的计算公式:正方体的表面积=棱长×棱长×6

5、正方体表面积的字母公式:S=6a2

(注意:S表示正方体的表面积,a表示正方体的棱长)

三、长方体和正方体的体积

体积和体积单位(1)

1、体积的意义:物体所占空间的大小叫做物体的体积。

2、体积单位:常用的体积单位有立方厘米(cm3)、立方分米(dm3)、立方米(m3)。

3、长方体的体积计算公式:长方体的体积=长×宽×高。

   字母公式:V=a×b×h。

(注意:V表示长方体的体积,a表示长方体的长,b表示长方体的宽,h表示长方体的高)

4、正方体的体积计算公式:正方体的体积=棱长×棱长×棱长。

   字母公式:V=a3。

体积和体积单位(2)

1、长方体和正方体体积计算公式的应用:

已知长方体的长、宽、高,可以直接利用长方体的体积公式计算出长方体的体积;已知正方体的棱长,可以直接利用正方体的体积公式计算出正方体的体积。

2、长方体、正方体统一的体积计算公式

长方体(或正方体)的体积=底面积×高。(体积通用公式)

字母公式:V=Sh。

(注意:V表示体积,S表示底面积,h表示高)

3、长方体和正方体统一的体积计算公式的应用:

根据公式V=Sh,可推导出S=V÷h,h=V÷S,已知这三个量中的任意两个量,都可以求出第三个量。

(请注意)长方体的表面积-底面积×2=4个侧面的面积和。

          4个侧面的面积和=底面周长×高

体积单位间的进率

1、m3和dm3、dm3和cm3分别是相邻的体积单位,进率都是1000,即1m3=1000dm3,1dm3=1000cm3。

长度单位、面积单位、体积单位的不同

 

意义

单位名称

相邻两个单位间的进率

长度单位

表示物体长度的量

米、分米、厘米

10

面积单位

计量物体面积大小的量

平方米、平方分米、平方厘米

100

体积单位

计量物体所占空间大小的量

立方米、立方分米、立方厘米

1000

 

2、体积单位之间互化的方法:①由低级单位转化成高级单位,如果进率是10、100、1000……用低级单位的数除以进率,或把低级单位的数的小数点向左移动一位、两位、三位……②由高级单位转化成低级单位,如果进率是10、100、1000……用高级单位的数乘进率,或把高级单位的数的小数点向右移动一位、两位、三位……

(请注意)只有相邻的两个体积单位之间的几率才是1000,判断和互化时首先要看这两个单位是不是相邻的。

容积和容积单位

1、容积的意义:容器所能容纳物体的体积、通常叫做它们的容积。

2、容积的单位:升和毫升,分别用字母L和mL表示。

3、1L=1000mL   1L=1dm3   1mL=1cm3

4、长方体或正方体容器容积的计算方法与体积的计算方法相同,但要从容器的里面测量长、宽、高。

(请注意)容积和体积的联系:①容积的大小可以通过容器所能容纳的物体的体积显示出来;②容积的计算方法与体积的计算方法相同。

(请注意)容积和体积的区别:①意义不同;②计算时,测量数据的方法不同;③有容积的物体一定有体积,但有体积的物体不一定有容积。③高有时候也叫:长(放倒时)、深(往下时)、厚(铺垫时)。

(请注意)物体的容积并不是物体的体积,体积是指物体自身所占空间的大小,容积是指物体所能容纳的物体的体积。

求不规则物体的体积

1、求形状不规则的物体的体积可以用排水法,上升的那部分水的体积就是形状不规则的物体的体积。

(请注意)用排水法求形状不规则的物体的体积时,将物体放入水中后,明确水上升的高度才是解题关键。

 

 

第四单元  分数的意义和性质

一、分数的意义

分数的产生和意义

1、在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数1来表示,我们通常把它叫做单位“1”,也叫做整体“1”。

3、分数的含义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。分数的形式可以用(m、n为自然数,且m≠0)表示。

4、分数单位的意义:把单位“1”平均分成若干份,表示其中一份的数叫分数的单位。

5、分数单位及其个数:一个分数的分母是几,它的分数单位就是几分之一;分子是几,就是几个这样的分数单位。

(知识巧记)单位“1”,很重要,“平均分”,莫小瞧。若干份,当分母,取份数,为分子。计数单位好理解,几分之一记得牢。单位个数是分子,千万不要弄混淆。

(请注意)不是所有分数的分数单位都不相同,分母不同的分数,分数单位是不同的;分母相同的分数,分数单位是相同的。

二、分数与除法

1、分数与除法的关系:两个整数相除,可以用分数表示商,即a÷b=(b≠0),反之,分数也可以看作两个数相除,分数的分子相当于被除数,分母相当于除数,分数线相当于除号,分数值相当于商。

2、求一个数是另一个数(0除外)的几分之几的问题的解题方法:

一个数÷另一个数=,即比较量÷标准量=

(请注意)分数和除法既有联系,又有区别,二者之间不能用相等或相同等词语来表述。

三、真分数和假分数

1、真分数的意义和特征

真分数的意义:分子比分母小的分数叫做真分数。

真分数的特征:真分数小于1。

2、假分数、带分数的意义和特征

假分数的意义与特征:分子比分母大或分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数的意义与特征:由整数(不包括0)和真分数合成的数叫做带分数。带分数大于1。

3、把假分数化成数或带分数的方法:用分子除以分母。当分子是分母的整数倍时,能化成整数,商就是这个整数;当分子不是分母的整数倍时,能化成带分数,商是带分数的整数部分,余数是真分数部分的分子,分母不变。

4、直线上的点表示分数的方法:用直线上的点表示分数,先确定分数在哪个区间,再确定分点。

(请注意)假分数化成整数时,商就是这个整数,没有分母;化成带分数时,分子除以分母的商是带分数的整数部分,分母不变。

四、分数的基本性质

1、分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、分数的基本性质的应用:利用分数的基本性质可以把分母不同的分数化成分母

相同的分数,还可以把一个分数成指定分母的分数。

(请注意)在叙述分数的基本性质时,不能忘记限定的条件,即同时乘或者除以的数不能为0。

(请注意)在运用分数的基本性质解题时,必须保证分数的大小不变,即分子和分母同时乘或除以同一个不为0的数。

五、约分

1、公因数和最大公因数的意义:几个数公有的因数叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。

2、求两个数最大公因数的方法:

①列举法:先分别找出两个数的因数,从中找出公因数,再找出最大的一个。

②筛选法:先找出两个数中较小数的因数,从中圈出叫大数的因数,再看哪一个因数最大。

③分解质因数法:先将这两个数分别分解质因数,再从分解的质因数中找出这两个数公有的质因数,公有的质因数相乘所得的积就是这两个数的最大公因数。

④短除法:把两个数公有的质因数从小到大依次作为除数,连续去除这两个数,直到得出的两个商只有公因数1为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。

3、求两个数最大公因数的特殊情况:

①当两个数成倍数关系时,较小数就是这两个数的最大公因数。

②公因数只有1的两个数的最大公因数是1。

4、互质数的意义和判断方法:公因数只有1的两个数叫做互质数。

六、约分w     W  w  .X k b 1. c O m

1、约分的意义和方法:

①把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

②约分的基本方法有两种:(第一种方法)逐步约分法:用分数和分母公有的质因数逐步去除分子和分母,直到得出一个最简分数。(第二种方法)一次约分法:用分数的分子和分母的最大公因数去除分子和分母,就得到最简分数。约分的依据是分数的基本性质。

③分子和分母只有公因数1的分数叫做最简分数。

2、分解质因数:

①合数都可以写成几个质数相乘的形式来表示。把一个合数用质数相乘形式表示出来叫分解质因数。

②分解质因数有两种方法:

a、乘法口诀分枝法。               b、短除法

如:  24                      ( 除数) 2 2 4(被除数)

4  × 6                            2 12

2×2×2×3                            2 6

                                       3(商)

除数从最小的质数开始,到商也是质数为止。

七、通分

1、公倍数和最小公倍数的意义:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

2、求两个数的最小公倍数的方法:

①列举法:分别写出两个数各自的倍数,再从中找出公倍数和最小公倍数。

②筛选法:先写出两个数中较大的倍数,然后从这组数中按从小到大的顺序圈出较小的倍数,第一个圈出的数就是它们的最小公倍数。

3、求两个的最小公倍数的特殊情况:(不要计算,直接写出答案)

①如果两个数中较大数是较小的倍数,那么较大数就是这两个数的最小公倍数。

②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

(请注意)两个数的公倍数不一定比这两个数都大,两个数的公因数也不一定比这两个数都小。

4、求两个数最小公倍数的实际应用:用求公倍数的方法解决实际问题时,明确求哪几个数的公倍数是解题的关键。

用除法式求最大公因数和最小公倍数

如:60和24

2  60    24

     2  30   12

      3  15  6

         5   2

60和24最大公因数是2×2×3=12

60和24最小公倍数是2×2×3×5×2=120

(请注意!):用除法式求最大公因数和最小公倍数用质数去除,除到几个数的商是互质数为止(只有公因数1),把除数的质数相乘的积就是这几个数的最大公因数(乘半边)。把除数的质数和商质数相乘的积就是这几个数的最小公倍数(乘半圈)。

5、分母相同及分子相同的分数大小比较的方法:

①分母相同的两个分数大小比较的方法:分母相同,分子不同的两个分数,分子大的分数大。

②分子相同的两个分数大小比较的方法:分子相同,分母不同的两个分数,分母小的分数大。

③分子、分母都不同的分数,先通分再比较分数的大小。

6、通分的意义和方法

①公分母:把异分母分数化成同分母分数,这个相同的分母叫做它们的公分母,其中最小的一个叫做最小公分母。

②通分的意义:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

③通分的方法:通分时用原分母的公倍数作公分母(为了计算简便,通常选用最小公倍数作公分母),然后把每个分数都化成用这个公倍数作分母的分数。

(请注意)通分时,并不是只能选择分母的最小公倍数作公分母,只要是分母的公倍数就可以,但是选择最小公倍数分母计算起来会比较简便。

7、小数化成分数的方法:根据小数的意义,有限小数可以直接写成分母是10,100,1000……的分数。原来是几位小数,就在1后面写几个0作分母,把原来的小数点去掉作分子,能约分的要约分。

8、分数化成小数的方法:

①分母是10,100,1000……的分数化成小数,可以直接去掉分母,看1后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点。

②分母不是10,100,1000……的分数化成小数,用分子除以分母,除不尽时,如果不作特殊要求,一般按“四舍五入”法保留两位小数。

(请注意)把带分数化成小数,方法与上面相同,带分数的整数部分作为小数的整数部分,分数部分化成小数,作为小数的小数部分。例如1+0.5=1.5,2+0.1=2.1。

9、判断一个最简分数能否化成有限小数的方法:一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中除了含有质因数2或5以外,还含有其他的质因数,这个最简分数就不能化成有限小数。

(请注意)判断一个分数能不能化成有限小数,先看这个分数是不是最简分数,再看它的分母中含有哪些质因数。

(请注意)在把带小数化成分数时,不要丢掉整数部分;把带分数化成小数时,也不要丢掉整数部分。

 

第五单元  图形的运动(三)

一、旋转

1、图形旋转的特征:图形旋转后,形状、大小都没有发生变化,只是位置发生了变化。

2、图形旋转的性质:图形绕某一点旋转一定的度数,图形中对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应线段、对应角都分别相等。

3、在方格纸上画简单图形旋转90°后的图形的方法:

①找出原图形的几个关键点所在的位置;②根据对应点旋转90°对应线段长度不变来找出关键点旋转后的对应点;③顺次连接所画出的对应点,就能得到旋转后的图形。

(知识巧记)图形旋转位置变,形状、大小如从前,对应点、线随图转,对应角度永不变。

图形旋转方向的辨别:顺时针 (向右往下转),逆时钟 (向左往下转)

二、平移和旋转在拼图中的应用

(请注意)在对图形变换进行分析时,不要认为一个图形只能通过一种变换方式得到,一个图形可以通过一种或两种甚至三种变换方式得到。

图形运动的3种方式是:轴对称、平移、旋转。

 

第六单元  分数的加法和减法

一、同分母分数加、减法

1、同分母分数连加,可以按照整数连加的计算顺序从左到右计算,也可以直接把每个加数的分子连加起来作分子,分母不变。

2、同分母分数连减,可以按照整数连减的计算顺序从左到右计算,也可以直接把被减数的分子连续减去减数的分子作分子,分母不变。

3、在计算过程中,“1”可以化成任意一个在计算中需要的分子和分母相同的分数,最后结果要化成最简分数。

(知识巧记)分数相加减,过程很简单。分母如相同,只把分子看。

            分子相加减,分母不用变。如果连加减,按照顺序算。

二、异分母分数加、减法

1、异分母分数相加、减,先通分,然后按照同分母分数加、减法的计算法则进行计算。

2、运用拆分法解决复杂的分数加法问题:如果一个分数是由相邻的自然数的积作分母,1作分子,形如(a为不等于0的自然数),那么可以把这个分数拆分成?         

三、分数加减混合运算

1、分数加减混合运算的运算顺序与整数加减混合运算的运算顺序相同。没有括号的,按照从左到右的顺序进行计算;有括号的,先算括号里面的,再算括号外面的。

2、计算没有括号的异分母分数的混合运算时,可以分步通过进行计算;也可以将几个分数一次性通分进行计算。

3、整数加法的运算定律对分数加法同样适用。  k   B 1  . c o   m

4、(简单的分数问题)解决此题的关键是抓住纯牛奶的总量不会改变这一特点进行分析推理,明确每次喝纯牛奶的数量和加水的数量,从而解决问题。

第七单元  折线统计图

一、单式折线统计图

1、折线统计图的特点:既可以反映出数量的多少,又能表示出数量的增减变化。

2、绘制折线统计图的方法:①画出横轴和纵轴(补画统计图时此步骤已给出);②确定一个单位长度表示数量多少(补画统计图时此步骤已给出);③描点,描点时应注意先找准横轴上的点,再找准纵轴上相对应的点,过两点分别做横轴、纵轴的垂线,两条垂线的交点就是所要描的点,在交点处点上实心点;④用线段顺次连接所有点,并标注数据;⑤标注好日期和标题。(日期也可不标注)

3、折线统计图的应用:可以根据折线统计图发现问题、解决问题,并进行合理地推测。

(知识巧记)统计图,类型多,条形、折线一一说。

            条形数量好比较,折线增减更明了。

            绘制折线较简单,描点连线来解决。

            完成绘图细分析,解决问题更容易。

二、复式折线统计图X  k   B 1   . c o  m

1、复式折线统计图:如果在统计过程中存在两组(或多组)数据,且需要在一幅统计图中表示这两组(或多组)数据,就要用两种(或多种)不同颜色(或不同形式)的折线来表示不同数量的变化情况,这种统计图就是复式折线统计图。

2、复式折线统计图的特点:复式折线统计图不但能表示出各组数据的多少,数据的增减变化的情况,而且可以比较各组数据的变化趋势。

3、复式折线统计图的绘制方法:与单式折线统计图的绘制方法基本相同,只是用不同的折线表示表示不同的量,需标明图例。

4、运用横向、纵向、综合、对比等不同的观察方法,可以读懂复式折线统计图,从中获取更多的信息,并能根据信息回答或提出相应的问题,同时进行简单地分析和合理地推测。

第八单元  数学广角——找次品

1、解决问题策略的多样性:从解题的称量过程中可以知道,在3瓶钙片中找出1瓶次品,至少需要称1次就能保证找出次品。

2、运用优化策略解决问题:在找次品时,把物体分成3份,每份数量尽量平均时,不能平均分,多的与少的只能相差1,可以保证找出次品的称量次数最少。


小学人文素质教育42节课视频,国际音标课程,国学大智慧及下图”2017“目录资料请回复“zl”获取。

微店新上架小学英语复习与总结、小学奥数8大主题224节课程,点击下面“阅读原文”查看。

欢迎家长 转载、分享 ,供更多孩子们学习!

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存