人教版4-6年级数学上册第一单元知识点
查看数学思维练习和答案,请回复数字“9”,每周更新两次,一次两期。
人教版四年级上册第一单元知识点
1. 10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
每相邻两个计数单位之间的进率是“十” ,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。
3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
5、亿以上数的读法:
① 先分级,从高位开始读起。先读亿级,再读万级,最后读个级。
② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。
③ 每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。
6、亿以上数的写法:
① 从最高位写起,先写亿级,再写万级,最后写个级。
② 哪个数位上一个单位也没有,就在那个数位上写0。
7、比较数的大小:
① 位数不同的两个数,位数多的那个数大,位数少的那个数小。
② 位数相同的两个数,从最高位开始比较,最高位大的那个数就大,如果最高位上的数相同,就比较下一个数位上的数,直至比较出大小。
8、 数的改写:
改写成用“万”或“亿”作单位的数,先画分级线,将整万的数或整亿的数每四位分一级,再将个级的4个0省略换成“万”字,或把个级和万级的8个0省略,换成“亿”字。
9、求近似数:
省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。
用“四舍五入”法求近似数时,要看省略的尾数部分最高位上的数是小于5 还是等于或大于5 。小于5就舍去尾数,改写成相应个数的0;等于或大于5就向前一位进1,再舍去尾数,也改写成相应个数的0。
10、表示物体个数:1,2 ,3, 4, 5 ,6 ,7 ,8 ,9 ,10, ……. 都是自然数。一个物体也没有,用0来表示, 0也是自然数。所有的自然数都是整数。
11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
12、计算器ON╱CE:开关及清除屏键,清除显示屏上的内容。
AC:清除键,清除所有内容。
DEL:清除刚输入的错误数字或运算符号。
13、算盘上1颗上珠表示5,1颗下珠表示1。
人教版五年级上册第一单元知识点
1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数,按照整数乘法的计算方法进行计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。积的小数部分末尾的0可以去掉。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数,按照整数乘法的计算法则进行计算;再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
积的小数位数不够时,要先在前面用0补位,再点小数点。积的小数部分末尾有0的可以把0去掉。
3. 小数乘法的验算:
(1)根据因数与积的小数位数检验;
(2)根据因数与积的大小关系检验;
(3)交换两个因数的位置重新计算;
(4)用计算器验算。
4、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
5、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
6、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
7、判断钱数够不够时,可以根据实际情况采用“上舍入”或“下舍入”的方法进行估算。
8、整数乘法运算定律推广到小数:
整数乘法运算定律对于小数乘法同样适用,应用乘法运算定律可以使计算简便。
9、运算定律和性质:
加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)
变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c
减法:减法性质:a-b-c=a-(b+c)
除法:除法性质:a÷b÷c=a÷(b×c)
人教版六年级上册第一单元知识点
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、求比一个数多(或少)几分之几的数是多少的解题方法
(1)单位“1”的量+(-) 单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;
(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。
*本文图片来源于网络,如有侵权请联系。
速算珠算、音标课程,国学大智慧、新概念入门级和青少版英语动画、人教版数学单元期中期末试卷等A类资料请回复字母“zl”。
微店:小升初英语、语文考点精讲、小学奥数课程,点击下面“阅读原文”查看。
学语数外,下资料,上网课,分享智慧教育。
扫描右图二维码轻松关注