查看原文
其他

OpenCV基于DLCO描述子匹配

gloomyfish OpenCV学堂 2019-03-29

一:局部特征描述子介绍

2014年VGG发表了一篇基于凸优化的局部特征描述子学习(DLCO)的论文,OpenCV3.2以后在扩展模块中对该论文的完成了代码实现并发布了API支持,提供了基于DLCO的描述子生成支持、基于生成的描述子,可以实现图像特征匹配的对象识别。关于特征描述子学习相关的细节可以看这里:

http://www.robots.ox.ac.uk/~vgg/software/learn_desc/

提供了描述子模型,学习数据,C++版本实现的源代码下载

二:OpenCV程序演示

OpenCV中VGG的DLCO描述子生成支持下面几种

  • VGG_120 = 100,

  • VGG_80 = 101,

  • VGG_64 = 102,

  • VGG_48 = 103

默认支持输出描述子是120个向量即VGG_120。基于DLCO在OpenCV中代码实现对象检测与匹配大致分为如下几步:

1.加载图像

  1. Mat box = imread("D:/vcprojects/images/box.png");

  2. Mat scene = imread("D:/vcprojects/images/box_in_scene.png");

  3. imshow("box image", box);

  4. imshow("scene image", scene);

2.关键点检测(SURF)

  1. Ptr<SURF> detector = SURF::create();

  2. int minHessian = 400;

  3. vector<KeyPoint> keypoints_1, keypoints_2;

  4. detector->setHessianThreshold(minHessian);

  5. detector->detect(box, keypoints_1);

  6. detector->detect(box_scene, keypoints_2);

3.描述子生成(DLCO)

  1. Ptr<VGG> vgg_descriptor = VGG::create();

  2. Mat descriptors_1, descriptors_2;

  3. vgg_descriptor->compute(box,  keypoints_1, descriptors_1);

  4. vgg_descriptor->compute(box_scene, keypoints_2, descriptors_2);

4.特征匹配实现对象识别

  1. // 计算匹配点

  2. FlannBasedMatcher matcher;

  3. std::vector< DMatch > matches;

  4. matcher.match(descriptors_1, descriptors_2, matches);

  5. double max_dist = 0; double min_dist = 100;

  6. // 计算最大与最小距离

  7. for (int i = 0; i < descriptors_1.rows; i++)

  8. {

  9.    double dist = matches[i].distance;

  10.    if (dist < min_dist) min_dist = dist;

  11.    if (dist > max_dist) max_dist = dist;

  12. }

  13. printf("-- Max dist : %f \n", max_dist);

  14. printf("-- Min dist : %f \n", min_dist);

  15. // 寻找最佳匹配,距离越小越好

  16. std::vector< DMatch > good_matches;

  17. for (int i = 0; i < descriptors_1.rows; i++)

  18. {

  19.    if (matches[i].distance <= min(2 * min_dist, 1.5))

  20.    {

  21.        good_matches.push_back(matches[i]);

  22.    }

  23. }

  24. // 绘制最终匹配点

  25. Mat img_matches;

  26. drawMatches(box, keypoints_1, box_scene, keypoints_2,

  27.    good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),

  28.    vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

  29. //-- Localize the object

  30. std::vector<Point2f> obj;

  31. std::vector<Point2f> scene;

  32. for (size_t i = 0; i < good_matches.size(); i++)

  33. {

  34.    //-- Get the keypoints from the good matches

  35.    obj.push_back(keypoints_1[good_matches[i].queryIdx].pt);

  36.    scene.push_back(keypoints_2[good_matches[i].trainIdx].pt);

  37. }

  38. Mat H = findHomography(obj, scene, RANSAC);

  39. //-- Get the corners from the image_1 ( the object to be "detected" )

  40. std::vector<Point2f> obj_corners(4);

  41. obj_corners[0] = cvPoint(0, 0); obj_corners[1] = cvPoint(box.cols, 0);

  42. obj_corners[2] = cvPoint(box.cols, box.rows); obj_corners[3] = cvPoint(0, box.rows);

  43. std::vector<Point2f> scene_corners(4);

  44. perspectiveTransform(obj_corners, scene_corners, H);

  45. //-- Draw lines between the corners (the mapped object in the scene - image_2 )

  46. line(img_matches, scene_corners[0] + Point2f(box.cols, 0), scene_corners[1] + Point2f(box.cols, 0), Scalar(0, 255, 0), 4);

  47. line(img_matches, scene_corners[1] + Point2f(box.cols, 0), scene_corners[2] + Point2f(box.cols, 0), Scalar(0, 255, 0), 4);

  48. line(img_matches, scene_corners[2] + Point2f(box.cols, 0), scene_corners[3] + Point2f(box.cols, 0), Scalar(0, 255, 0), 4);

  49. line(img_matches, scene_corners[3] + Point2f(box.cols, 0), scene_corners[0] + Point2f(box.cols, 0), Scalar(0, 255, 0), 4);

  50. //-- Show detected matches

  51. imshow("Good Matches & Object detection", img_matches);

原图:

特征匹配结果


更多相关文章阅读

OpenCV中ORB特征提取与匹配

彩色图像高斯反向投影

图像处理之理解Homography matrix(单应性矩阵)



知不足者好学,

耻下问者自满!


关注【OpenCV学堂】

长按或者扫码下面二维码即可关注

OpenCV深度学习 

+群 573300093


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存