深度学习AI美颜系列----AI美发算法(美妆相机/天天P图染发特效)
给照片或者视频中的人物头发换颜色,这个技术已经在手机app诸如天天P图,美图秀秀等应用中使用,并获得了不少用户的青睐。如何给照片或者视频中的人物头发换发色?换发色算法流程如下图所示:
1.AI头发分割模块
基于深度学习的目标分割算法已经比较成熟,比较常用的有FCN,SegNet,UNet,PspNet,DenseNet等等。这里我们使用Unet网络来进行头发分割,具体可以参考如下链接:点击打开链接Unet头发分割代码如下:
def get_unet_256(input_shape=(256, 256, 3),
num_classes=1):
inputs = Input(shape=input_shape)
# 256
down0 = Conv2D(32, (3, 3), padding='same')(inputs)
down0 = BatchNormalization()(down0)
down0 = Activation('relu')(down0)
down0 = Conv2D(32, (3, 3), padding='same')(down0)
down0 = BatchNormalization()(down0)
down0 = Activation('relu')(down0)
down0_pool = MaxPooling2D((2, 2), strides=(2, 2))(down0)
# 128
down1 = Conv2D(64, (3, 3), padding='same')(down0_pool)
down1 = BatchNormalization()(down1)
down1 = Activation('relu')(down1)
down1 = Conv2D(64, (3, 3), padding='same')(down1)
down1 = BatchNormalization()(down1)
down1 = Activation('relu')(down1)
down1_pool = MaxPooling2D((2, 2), strides=(2, 2))(down1)
# 64
down2 = Conv2D(128, (3, 3), padding='same')(down1_pool)
down2 = BatchNormalization()(down2)
down2 = Activation('relu')(down2)
down2 = Conv2D(128, (3, 3), padding='same')(down2)
down2 = BatchNormalization()(down2)
down2 = Activation('relu')(down2)
down2_pool = MaxPooling2D((2, 2), strides=(2, 2))(down2)
# 32
down3 = Conv2D(256, (3, 3), padding='same')(down2_pool)
down3 = BatchNormalization()(down3)
down3 = Activation('relu')(down3)
down3 = Conv2D(256, (3, 3), padding='same')(down3)
down3 = BatchNormalization()(down3)
down3 = Activation('relu')(down3)
down3_pool = MaxPooling2D((2, 2), strides=(2, 2))(down3)
# 16
down4 = Conv2D(512, (3, 3), padding='same')(down3_pool)
down4 = BatchNormalization()(down4)
down4 = Activation('relu')(down4)
down4 = Conv2D(512, (3, 3), padding='same')(down4)
down4 = BatchNormalization()(down4)
down4 = Activation('relu')(down4)
down4_pool = MaxPooling2D((2, 2), strides=(2, 2))(down4)
# 8
center = Conv2D(1024, (3, 3), padding='same')(down4_pool)
center = BatchNormalization()(center)
center = Activation('relu')(center)
center = Conv2D(1024, (3, 3), padding='same')(center)
center = BatchNormalization()(center)
center = Activation('relu')(center)
# center
up4 = UpSampling2D((2, 2))(center)
up4 = concatenate([down4, up4], axis=3)
up4 = Conv2D(512, (3, 3), padding='same')(up4)
up4 = BatchNormalization()(up4)
up4 = Activation('relu')(up4)
up4 = Conv2D(512, (3, 3), padding='same')(up4)
up4 = BatchNormalization()(up4)
up4 = Activation('relu')(up4)
up4 = Conv2D(512, (3, 3), padding='same')(up4)
up4 = BatchNormalization()(up4)
up4 = Activation('relu')(up4)
# 16
up3 = UpSampling2D((2, 2))(up4)
up3 = concatenate([down3, up3], axis=3)
up3 = Conv2D(256, (3, 3), padding='same')(up3)
up3 = BatchNormalization()(up3)
up3 = Activation('relu')(up3)
up3 = Conv2D(256, (3, 3), padding='same')(up3)
up3 = BatchNormalization()(up3)
up3 = Activation('relu')(up3)
up3 = Conv2D(256, (3, 3), padding='same')(up3)
up3 = BatchNormalization()(up3)
up3 = Activation('relu')(up3)
# 32
up2 = UpSampling2D((2, 2))(up3)
up2 = concatenate([down2, up2], axis=3)
up2 = Conv2D(128, (3, 3), padding='same')(up2)
up2 = BatchNormalization()(up2)
up2 = Activation('relu')(up2)
up2 = Conv2D(128, (3, 3), padding='same')(up2)
up2 = BatchNormalization()(up2)
up2 = Activation('relu')(up2)
up2 = Conv2D(128, (3, 3), padding='same')(up2)
up2 = BatchNormalization()(up2)
up2 = Activation('relu')(up2)
# 64
up1 = UpSampling2D((2, 2))(up2)
up1 = concatenate([down1, up1], axis=3)
up1 = Conv2D(64, (3, 3), padding='same')(up1)
up1 = BatchNormalization()(up1)
up1 = Activation('relu')(up1)
up1 = Conv2D(64, (3, 3), padding='same')(up1)
up1 = BatchNormalization()(up1)
up1 = Activation('relu')(up1)
up1 = Conv2D(64, (3, 3), padding='same')(up1)
up1 = BatchNormalization()(up1)
up1 = Activation('relu')(up1)
# 128
up0 = UpSampling2D((2, 2))(up1)
up0 = concatenate([down0, up0], axis=3)
up0 = Conv2D(32, (3, 3), padding='same')(up0)
up0 = BatchNormalization()(up0)
up0 = Activation('relu')(up0)
up0 = Conv2D(32, (3, 3), padding='same')(up0)
up0 = BatchNormalization()(up0)
up0 = Activation('relu')(up0)
up0 = Conv2D(32, (3, 3), padding='same')(up0)
up0 = BatchNormalization()(up0)
up0 = Activation('relu')(up0)
# 256
classify = Conv2D(num_classes, (1, 1), activation='sigmoid')(up0)
model = Model(inputs=inputs, outputs=classify)
#model.compile(optimizer=RMSprop(lr=0.0001), loss=bce_dice_loss, metrics=[dice_coeff])
return model
分割效果举例如下:
使用的训练和测试数据集合大家自己准备即可。
2.头发换色模块
这个模块看起来比较简单,实际上却并非如此。 这个模块要细分为 ①头发颜色增强与修正模块; ②颜色空间染色模块; ③头发细节增强;
头发颜色增强与修正模块
为什么要颜色增强与修正? 先看下面一组图,我们直接使用HSV颜色空间对纯黑色的头发进行染色,目标色是紫色,结果如下:
大家可以看到,针对上面这张原图,头发比较黑,在HSV颜色空间进行头发换色之后,效果图中很不明显,只有轻微的颜色变化;
为什么会出现这种情况?原因如下:
我们以RGB和HSV颜色空间为例,首先来看下HSV和RGB之间的转换公式:
设 (r, g, b)分别是一个颜色的红、绿和蓝坐标,它们的值是在0到1之间的实数。设max等价于r, g和b中的最大者。设min等于这些值中的最小者。要找到在HSL空间中的 (h, s, l)值,这里的h ∈ [0, 360)度是角度的色相角,而s, l ∈ [0,1]是饱和度和亮度,计算为:
我们假设头发为纯黑色,R=G=B=0,那么按照HSV计算公式可以得到H = S = V = 0;
假设我们要把头发颜色替换为红色(r=255,g=0,b=0);
那么,我们先将红色转换为对应的hsv,然后保留原始黑色头发的V,红色头发的hs,重新组合新的hsV,在转换为RGB颜色空间,即为头发换色之后的效果(hs是颜色属性,v是明度属性,保留原始黑色头发的明度,替换颜色属性以达到换色目的);
HSV转换为RGB的公式如下:
对于黑色,我们计算的结果是H=S=V=0,由于V=0,因此,p=q=t=0,不管目标颜色的hs值是多少,rgb始终都是0,也就是黑色;
这样,虽然我们使用了红色,来替换黑色头发,但是,结果却依旧是黑色,结论也就是hsv/hsl颜色空间,无法对黑色换色。
下面,我们给出天天P图和美妆相机对应紫色的换发色效果:
与之前HSV颜色空间的结果对比,我们明显可以看到,天天P图和美妆相机的效果要更浓,更好看,而且对近乎黑色的头发进行了完美的换色;
由于上述原因,我们这里需要对图像中的头发区域进行一定的增强处理:提亮,轻微改变色调;
这一步通常可以在PS上进行提亮调色,然后使用LUT来处理;
经过提亮之后的上色效果如下图所示:
可以看到,基本与美妆相机和天天P图类似了。
HSV/HSL/YCbCr颜色空间换色
这一步比较简单,保留明度分量不变,将其他颜色、色调分量替换为目标发色就可以了。
这里以HSV颜色空间为例:
假如我们要将头发染发为一半青色,一般粉红色,那么我们构建如下图所示的颜色MAP:
对于头发区域的每一个像素点P,我们将P的RGB转换为HSV颜色空间,得到H/S/V;
根据P在原图头发区域的位置比例关系,我们在颜色MAP中找到对应位置的像素点D,将D的RGB转换为HSV颜色空间,得到目标颜色的h/s/v;
根据目标颜色重组hsV,然后转为RGB即可;
这一模块代码如下:
// h = [0,360], s = [0,1], v = [0,1]
void RGBToHSV(int R, int G, int B, float* h, float* s, float * v)
{
float min, max;
float r = R / 255.0f;
float g = G / 255.0f;
float b = B / 255.0f;
min = MIN2(r,MIN2(g,b));
max = MAX2(r,MAX2(g,b));
if (max == min)
*h = 0;
if (max == r && g >= b)
*h = 60.0f * (g - b) / (max - min);
if (max == r && g < b)
*h = 60.0f * (g - b) / (max - min) + 360.0f;
if (max == g)
*h = 60.0f * (b - r) / (max - min) + 120.0f;
if (max == b)
*h = 60.0f * (r - g) / (max - min) + 240.0f;
if (max == 0)
*s = 0;
else
*s = (max - min) / max;
*v = max;
};
void HSVToRGB(float h, float s, float v, int* R, int *G, int *B)
{
float q = 0, p = 0, t = 0, r = 0, g = 0, b = 0;
int hN = 0;
if (h < 0)
h = 360 + h;
hN = (int)(h / 60);
p = v * (1.0f - s);
q = v * (1.0f - (h / 60.0f - hN) * s);
t = v * (1.0f - (1.0f - (h / 60.0f - hN)) * s);
switch (hN)
{
case 0:
r = v;
g = t;
b = p;
break;
case 1:
r = q;
g = v;
b = p;
break;
case 2:
r = p;
g = v;
b = t;
break;
case 3:
r = p;
g = q;
b = v;
break;
case 4:
r = t;
g = p;
b = v;
break;
case 5:
r = v;
g = p;
b = q;
break;
default:
break;
}
*R = (int)CLIP3((r * 255.0f),0,255);
*G = (int)CLIP3((g * 255.0f),0,255);
*B = (int)CLIP3((b * 255.0f),0,255);
};
效果图如下:
本文算法对比美妆相机效果如下:
头发区域增强
这一步主要是为了突出头发丝的细节,可以使用锐化算法,如Laplace锐化,USM锐化等等。上述过程基本是模拟美妆相机染发算法的过程,给大家参考一下,最后给出本文算法的一些效果举例:
本文效果除了实现正常的单色染发,混合色染发之外,还实现了挑染,如最下方一组效果图所示。
对于挑染的算法原理:
计算头发纹理,根据头发纹理选取需要挑染的头发束,然后对这些头发束与其他头发分开染色即可,具体逻辑这里不再累赘,大家自行研究,这里给出解决思路供大家参考。
最后,本文算法理论上实时处理是没有问题的,头发分割已经可以实时处理,所以后面基本没有什么耗时操作,使用opengl实现实时染发是没有问题的。
作者QQ:1358009172
更多相关阅读
远飞者当换其新羽
善筑者先清其旧基
关注【OpenCV学堂】
长按或者扫码二维码即可关注
请戳广告支持,谢谢!
【关于学堂】 - 微信联系
技术交流合作!