干货 | Tensorflow设计简单分类网络实现猫狗图像分类训练与测试
微信公众号:OpenCV学堂
关注获取更多计算机视觉与深度学习知识
觉得文章对你有用,请戳底部广告支持
模型结构与代码实现
第一层:32个feature map 5x5卷积、步长为2、最大值池化
局部相应归一化处理(LRN)
第二层:64个feature map 3x3卷积、步长为1、没有池化
第三层:128个feature map 3x3卷积、步长为1、最大值池化
局部相应归一化处理(LRN)
扁平层操作12x12x128个神经元
输出层操作2个神经元输出、sigmoid激活函数
卷积层采用relu作为激活函数。
模型解释
卷积层深度不断加深,用以补偿分辨率下降带来的信息损失、
LRN提升神经元竞争能力,增强最终模型的泛化能力。
通过上述简单的卷积神经网络,对25000张的猫狗图像进行训练,对卷积层1、3后面使用局部响应归一化处理(LRN), 最终输出二分类图像。从测试集选择测试图像进行分类预测,计算准确率。
网络模型代码实现
def inference(input_tensor):
# -----------------------第一层----------------------------
with tf.variable_scope('layer1-conv1'):
# 初始化权重conv1_weights为可保存变量,大小为5x5,3个通道(RGB),数量为32个
conv1_weights = tf.get_variable("weight", [5, 5, 3, 32],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
print(relu1)
with tf.name_scope("layer2-pool1"):
# 池化计算,调用tensorflow的max_pool函数,strides=[1,2,2,1],表示池化边界,2个对一个生成,padding="VALID"表示不操作。
pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
norm1 = tf.nn.lrn(pool1, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm1')
# -----------------------第二层----------------------------
with tf.variable_scope("layer3-conv2"):
# 同上,不过参数的有变化,根据卷积计算和通道数量的变化,64个feature maps
conv2_weights = tf.get_variable("weight", [3, 3, 32, 64],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(norm1, conv2_weights, strides=[1, 2, 2, 1], padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
print(relu2)
# Local Response Normalization (parameters from paper)
# 128个 feature maps
with tf.variable_scope("layer4-conv3"):
conv3_weights = tf.get_variable("weight", [3, 3, 64, 128],
initializer=tf.truncated_normal_initializer(stddev=0.1))
conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
conv3 = tf.nn.conv2d(relu2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))
print(relu3)
with tf.name_scope("layer5-pool2"):
pool2 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
print(pool2)
norm2 = tf.nn.lrn(pool2, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm2')
# -----------------------全连接层----------------------------
with tf.variable_scope("fc1"):
fc1 = tf.layers.flatten(norm2)
fc2 = tf.layers.dense(fc1, 2, activation=tf.nn.sigmoid)
return fc2
数据加载与训练
对下载的训练数据集根据名称排序,分为两个目录
文件夹0,所有猫的图像
文件夹1,所有狗的图像
使用one-hot编码标签
[0, 1] 表示猫
[1, 0] 表示狗
加载所有图像数据与标签的代码如下:
def get_filelist():
images = []
labels = []
for root, dirs, files in os.walk('D:/images/train_data/train_img/0'):
for file in files:
file = 'D:/images/train_data/train_img/0/' + file
images.append(file)
labels.append([0, 1])
for root, dirs, files in os.walk('D:/images/train_data/train_img/1'):
for file in files:
file = 'D:/images/train_data/train_img/1/' + file
images.append(file)
labels.append([1, 0])
return np.asarray(images), np.asarray(labels, np.int32)
def get_data(file_list, index, batch_size, label_list):
images = []
labels = []
for i in range(index * batch_size, (1 + index) * batch_size):
i = i % (len(file_list))
img = io.imread(file_list[i])
img = transform.resize(img, (100, 100))
images.append(img)
labels.append(label_list[i])
return np.asarray(images, np.float32), np.asarray(labels, np.int32)
每个batch=64张图像进行训练,输入图像大小resize为100x100x3, RGB三通道彩色图像
训练时候输入图像与标签定义代码如下:
# 两个占位符
x = tf.placeholder(tf.float32, shape=[None, 100, 100, 3], name='x')
y_ = tf.placeholder(tf.float32, shape=[None, 2], name='y_')
计算损失采用交叉熵损失,使用Adam优化器进行优化,代码实现如下:
logits = inference(x)
cross_loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_)
loss = tf.reduce_mean(cross_loss)
tf.add_to_collection('losses', loss)
# 设置整体学习率为α为0.001
train_vars = tf.trainable_variables()
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss, var_list=train_vars)
在1050ti GPU上运行10000次迭代,会保存最后的检查点文件、训练与保存检查点代码如下:
# 设置为gpu
tf.device('/gpu:0')
print("training start")
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_acc = 0
test_acc = 0
train_loss = 0
for epoch in range(n_epoch):
start_time = time.time()
feed_img, feed_label = get_data(x_train, epoch, batch_size, y_train)
_, err, ac = sess.run([train_op, loss, acc], feed_dict={x: feed_img, y_: feed_label})
if epoch % 100 == 0:
print("epoch %d, loss: %.2f, ac : %.2f"%(epoch, err, ac))
saver.save(sess, "./dog_and_cat.model", global_step=10000)
使用模型进行预测
定义预测结果代码如下:
prediction = tf.cast(tf.argmax(logits, 1), tf.float32)
对保存好的检查点进行恢复,加载随机测试图像数据,调用模型进行测试,代码如下:
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
cat_path = "D:/images/train_data/test_img/0/"
dog_path = "D:/images/train_data/test_img/1/"
dogs = os.listdir(dog_path)
cats = os.listdir(cat_path)
count = 0
for f in dogs:
if os.path.isfile(os.path. join(dog_path, f)):
image = io.imread(os.path.join(dog_path, f))
copy = np.copy(image)
image = transform.resize(image, (100, 100))
image = np.float32(image)
image_tensor = np.expand_dims(image, 0)
digit = sess.run(prediction, feed_dict={x: image_tensor})
print("predict digit : %d., actual digit : %s"%(digit[0], 0))
if digit[0] == 0:
count = count + 1
cv.putText(copy, "dog", (20, 50), cv.FONT_HERSHEY_SCRIPT_SIMPLEX, 1.0, (0, 0, 255), 2, 8)
cv.imshow("Image Classification", copy)
cv.waitKey(0)
for f in cats:
if os.path.isfile(os.path.join(cat_path, f)):
image = io.imread(os.path.join(cat_path, f))
copy = np.copy(image)
image = transform.resize(image, (100, 100))
image = np.float32(image)
image_tensor = np.expand_dims(image, 0)
digit = sess.run(prediction, feed_dict={x: image_tensor})
print("predict digit : %d., actual digit : %s"%(digit[0], 1))
if digit[0] == 1:
count = count + 1
cv.putText(copy, "cat", (20, 50), cv.FONT_HERSHEY_SCRIPT_SIMPLEX, 1.0, (0, 0, 255), 2, 8)
cv.imshow("Image Classification", copy)
cv.waitKey(0)
print("correct precent: %f"%(count/(len(cats)+len(dogs))))
测试运行截图如下:
欢迎加入【OpenCV研习社】体系化学习计算机视觉OpenCV+tensorflow编程技术,给自己未来加油!长按或者扫码即可查看已经分享60+精华知识点!每周更新
【推荐阅读】
坚其志,苦其心,劳其力
事无大小,必有所成
关注【OpenCV学堂】
长按或者扫码即可关注
送书活动以下三位失联
+ 北海Plus
+大魔头
+李辉
请在下周二(2018-11-13)之前公众号发送"微信号+送书"
我会第一时间加你们微信,邮寄图书