搞懂 Transformer 结构,看这篇 PyTorch 实现就够了
↓推荐关注↓
下面分享一篇实验室翻译的来自哈佛大学一篇关于Transformer的详细博文。
Alexander Rush (@harvardnlp[8] or srush@seas.harvard.edu)
0. 准备工作
# !pip install http://download.pytorch.org/whl/cu80/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl numpy matplotlib spacy torchtext seaborn
1. 背景
2. 模型结构
2. Encoder和Decoder
3. Attention
4. Attention在模型中的应用
5. Position-wise前馈网络
6. Embedding和Softmax
7. 位置编码
8. 完整模型
参考链接
[1] https://arxiv.org/abs/1706.03762
[2] https://pytorch.org/
[3] https://github.com/harvardnlp/annotated-transformer
[4] https://drive.google.com/file/d/1xQXSv6mtAOLXxEMi8RvaW8TW-7bvYBDF/view?usp=sharing
[5] http://opennmt.net
[6] https://github.com/tensorflow/tensor2tensor
[7] https://github.com/awslabs/sockeye
[8] https://twitter.com/harvardnlp
[9] https://arxiv.org/abs/1409.0473
[10] https://arxiv.org/abs/1308.0850
[11] https://arxiv.org/abs/1512.03385
[12] https://arxiv.org/abs/1607.06450
[13] https://arxiv.org/abs/1409.0473
[14] https://arxiv.org/abs/1703.03906
[15] https://arxiv.org/abs/1609.08144
[16] https://arxiv.org/abs/1608.05859
[17] https://arxiv.org/pdf/1705.03122.pdf
向下滑动查看
作者:Alexander Rush
原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html
来源:哈工大SCIR
- EOF -
加主页君微信,不仅Python技能+1
主页君日常还会在个人微信分享Python相关工具、资源和精选技术文章,不定期分享一些有意思的活动、岗位内推以及如何用技术做业余项目
加个微信,打开一扇窗
觉得本文对你有帮助?请分享给更多人
推荐关注「Python开发者」,提升Python技能
点赞和在看就是最大的支持❤️