其他
统计学基础知识梳理,建议收藏!
↓推荐关注↓
来源:PMCAFF
作者:大山里人
目标一:构建出可以让人理解的知识架构,让读者对这个知识体系一览无余 目标二:尽l量阐述每个知识在数据分析工作中的使用场景及边界条件 目标三:为读者搭建从“理论”到“实践"的桥梁
你的“对象” 是谁?
一维:就是当前摆在我们面前的“一组”,“一批”,哪怕是“一坨”数据。这里我们会用到统计学的知识去研究这类对象。二维:就是研究某个“事件”,笔者认为事件是依托于“时间轴”存在的,过去是否发生,现在是可能会出现几种情况,每种情况未来发生的可能性有多大?这类问题是属于概率论的范畴。因此,我们在做数据分析的研究前,先弄清我们研究的对象属于哪类范畴,然后在按着这个分支检索自己该用到的知识或方法来解决问题。分析就像在给 “爱人” 画肖像从外观的角度描述一个姑娘,一般是面容怎么样?身段怎么样?两个维度去描述。就像画一幅肖像画,我们的研究“对象”在描述性分析中也是通过两个维度去来描述即,“集中趋势---代表值”,“分散和程度”。
看到这几个概念是不是就很熟悉了?笔者认为一个描述性的分析就是从这两个维度来说清楚你要研究的对象是什么样子?至于从哪些特征开始说呢?就是常用的概念“均值”,“方差”之类的。下面我们进入正题,笔者将详细阐述整个知识架构。
02 对数据的描述性分析
数据分析中最常规的情况,比如你手上有一组,一批或者一坨数据,数据分析的过程就是通过“描述”从这些数据中获取的信息,通常可以从两个维度去描述:
Q1:第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。 Q2:第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。 Q3:第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
迷你距 也叫“四分位距”迷你距。它是一组数据中较小四分位数与较大四分位数之差。即:迷你距= 上四分位数 - 下四分位数迷你距可以反映中间50%的数据,如果出现了极大或极小的异常值,将会被排除在中心数据50%以外。因此使用迷你距可以剔除数据中异常值。全距,四分位距,箱形图可以表征一组数据极大和极小值之间的差值跨度,一定程度上反应了数据的分散程度,但是却无法精准的告诉我们,这些数值具体出现的频率,那么我们该如何表征呢?我们度量每批数据中数值的“变异”程度时,可以通过观察每个数据与均值的距离来确定,各个数值与均值距离越小,变异性越小数据越集中,距离越大数据约分散,变异性越大。方差和标准差就是这么一对儿用于表征数据变异程度的概念。方差方差是度量数据分散性的一种方法,是数值与均值的距离的平方数的平均值。
2. 集中趋势参数:均值,中位数,众数
3. 分散性和变异性参数 : 全距,四分位距,方差,标准差,标准分
03 关于“事件”的研究分析概率论
事件:有概率可言的一件事情,一个事情可能会发生很多结果,结果和结果之间要完全穷尽,相互独立。 概率:每一种结果发生的可能性。所有结果的可能性相加等于1,也就是必然!!! 概率分布:我们把事件和事件所对应的概率组织起来,就是这个事件的概率分布。
离散数据: 一个粒儿,一个粒儿的数据就是离散型数据。 连续数据: 一个串儿,一个串儿的数据就是连续型数据。
f(x)----是该关于事件X的概率密度函数 μ --- 均值 σ^2 ---方差 σ ---标准差
step1 --- 确定分布和范围 ,求出均值和方差 step2 --- 利用标准分将正态分布转化为标准正态分布 (还记得 第一部分的标准分吗?) step3 ---查表找概率
对立事件:如果一个事件,A’包含所有A不包含的可能性,那么我们称A’和A是互为对立事件 穷尽事件:如何A和B为穷尽事件,那么A和B的并集为1 互斥事件:如何A和B为互斥事件,那么A和B没有任何交集 独立事件:如果A件事的结果不会影响B事件结果的概率分布那么A和B互为独立事件。
04 关于“小样本”预测“大总体”
现实生活中,总体的数量如果过于庞大我们无法获取总体中每个数据的数值,进行对总体的特征提取进而完成分析工作。那么接下来就用到了本章节的知识。
总体:你研究的所有事件的集合 样本:总体中选取相对较小的集合,用于做出关于总体本身的结论 偏倚:样本不能代表目标总体,说明该样本存在偏倚 简单随机抽样: 随机抽取单位形成样本。 分成抽样: 总体分成几组或者几层,对每一层执行简单随机抽样 系统抽样:选取一个参数K,每到第K个抽样单位,抽样一次。
用途1:用于检验拟合优度。也就是检验一组给定的数据与指定分布的吻合程度; 用途2:检验两个变量的独立性。通过卡方分布可以检查变量之间是否存在某种关联:
第一类错误: 拒绝了一个正确的假设,错杀了一个好人 第二类错误:接收了一个错误的假设,放过了一个坏人
05 相关与回归(y=ax+b)
这里介绍的相关和回归是关于二维双变量的最简单最实用的线性回归,非线性回归这里不暂不做拓展。散点图:显示出二变量数据的模式相关性:变量之间的数学关系。线性相关性:两个变量之间呈现的直线相关关系。最佳拟合直线:与数据点拟合程度最高的线。(即每个因变量的值与实际值的误差平方和最小)误差平方和SSE:线性回归法:求最佳拟合直线的方法(y=ax+b),就是求参数a和b斜率a公式:
- EOF -
加主页君微信,不仅Python技能+1
主页君日常还会在个人微信分享Python相关工具、资源和精选技术文章,不定期分享一些有意思的活动、岗位内推以及如何用技术做业余项目
加个微信,打开一扇窗
觉得本文对你有帮助?请分享给更多人
推荐关注「Python开发者」,提升Python技能
点赞和在看就是最大的支持❤️