参会注册
长按识别左侧二维码,登录报名网站(先注册网站会员,然后提交报名信息)
会议微信号
参会注册
长按识别左侧二维码,登录报名网站(先注册网站会员,然后提交报名信息)
会议微信号
随着我国城市化进程的推进,轨道交通因为运力大、速度快、污染小以及安全性高等特点,近年来得到大力发展,其直流牵引系统中存在的杂散电流与轨道电位引起的安全问题受到广泛关注。图1为轨道交通直流牵引系统中杂散电流的产生机理示意图,出于经济运行的考虑,走行轨不仅用于列车运行,同时还作为列车牵引电流的回流轨。
由于走行轨与大地之间不可能完全绝缘,一部分牵引电流泄漏进入大地,并沿着土壤或埋地金属管线流动,最后返回到走行轨和牵引变电站负极,这部分电流称为杂散电流,也称之为迷流。杂散电流会导致走行轨和牵引系统附近的金属结构遭到严重的电化学腐蚀,使用寿命大大缩短;长时间的腐蚀将导致管线破损,甚至引发火灾和爆炸事故。
同时,由于走行轨纵向电阻的存在,牵引电流会在走行轨上产生几十伏甚至上百伏的电势差,称之为轨道电位。由于轨道电位的最大值出现在列车所在位置处,所以会对人体安全产生潜在危害。
图1 直流牵引系统中杂散电流的产生机理
由于杂散电流与轨道电位的防治措施在现场验证协调难度大,国内外学者提出了一系列模拟系统用于杂散电流与轨道电位的研究,主要分为三类:①多维空间模拟系统;②定值电阻模拟系统;③可变电阻模拟系统。
多维空间模拟系统因为建模过程复杂且适用对象单一而较少使用。定值电阻模拟系统的模拟精度与系统使用的电阻数量呈正比,同时只能实现杂散电流和轨道电位的静态模拟。可变电阻模拟系统在定值电阻模拟系统的基础上,采用电力电子变换器替代电阻,在提高系统模拟精度的同时,实现了杂散电流与轨道电位的动态模拟。
但已有的可变电阻模拟系统只适用于牵引变电站负极直接接地的牵引系统,且只能模拟列车以单一工况运行时的杂散电流与轨道电位,无法适用于为抑制杂散电流和轨道电位提出的多区间牵引系统。
针对上述不足,本文首先研究了一种双向可变电阻模块(Bidirectional Variable Resistance Module,BVRM),通过改变列车左右两侧的走行轨纵向电阻,模拟列车的不同运行工况。在此基础上,结合牵引变电站接地方式和牵引系统特点,进一步提出三种动态模拟系统:基本型动态模拟系统(Basic Dynamic Simulation System,B-DSS)、多接地动态模拟系统(Multiple Grounding Dynamic Simulation System,MG-DSS)和多区间动态模拟系统(Multiple Interval Dynamic Simulation System,MI-DSS),分别讨论了其工作原理、参数选择和控制策略。最后对所提出模拟系统开展了详细的仿真和实验验证。
图18 模拟系统控制框图
联系我们
《电工技术学报》:010-63256949/6981
邮箱:dgjsxb@vip.126.com
《电气技术》:010-63256943
邮箱:dianqijishu@126.com
编务:010-63256994;订阅:010-63256817