其他
学术简报︱电动客车复合储能系统功率控制的新方法,可有效回收制动能量
锂电池作为传统纯电动汽车的主要能量源,价格合理、比能量高。然而过大的放电电流和较长的充电时间严重影响了锂电池的寿命和基本特性,从而影响了车辆的加速性能、安全性能等。超级电容具有较高的功率密度和较快的充放电速率,内阻随电流的增大而减小,将其作为辅助能源可以承受大电流充放电,在一定程度上能够缓解电动汽车续驶里程短的问题,在能源和污染的问题上也具有重要的意义。
在对能量管理的分析中,基于规则的控制方法是最为经典的控制方法。
有学者利用逻辑门限控制策略降低了混合动力汽车油耗。
有学者利用逻辑门限控制策略对纯电动汽车行驶最大允许功率的阈值进行优化,经优化后整车的经济性得到了提高。
有学者设计了纯电动汽车复合储能系统逻辑门限控制策略,仿真和实验结果表明该控制策略能够避免蓄电池大电流冲击,提高蓄电池的使用寿命和汽车的续驶里程。
近年来,神经网络、遗传算法等智能控制方法被应用到车辆能量管理技术中。
有学者将神经网络用于整车能量管理中。
有学者采用改进的非支配排序遗传算法降低了增程式汽车的油耗。
有学者利用带精英策略的非支配遗传基因算法使整车系统能量损失得到有效降低。
有学者利用粒子群算法设计了双能源电动汽车的模糊能量控制器,实验结果表明整车具有更好的燃油经济性。
有学者制定了复合储能系统的复合模糊控制策略,与锂电池单独供电相比,百公里加速时间缩短了9.85%,纽约城市循环(New York City Cycle, NYCC)工况下总能耗降低了19.08%,动力电池温升降低了61.53%。
有学者提出一种混合动力电动汽车复合电源的非线性控制策略,该功率分配控制策略能充分发挥复合电源中蓄电池和超级电容器的优势。
目前,尽管复合储能系统被越来越多的研究人员所关注,且在降低功耗、制动能量回收、延长锂电池使用寿命等方面也取得了很多成绩,但在制动能量回收和功率分配方面的研究仍显不足。
本文主要对纯电动客车复合储能系统的拓扑结构进行分析,根据实验数据对复合储能系统进行模型构建和参数辨识。同时,针对电动客车复合储能系统的功率分配问题,制定了逻辑门限控制策略和模糊控制策略两种功率分配方法。
应用汽车仿真软件Cruise构建了电动客车整车模型,并将中国城市道路工况下的仿真结果与锂电池单独供电进行对比分析。搭建实验台架,通过实验来验证所提模糊控制策略在降低锂电池充放电电流、降低系统能耗等方面的有效性。
图1 复合储能系统拓扑结构
图11 整车仿真模型
图26 实验台架及拓扑结构
联系我们
《电工技术学报》:010-63256949/6981
邮箱:dgjsxb@vip.126.com
《电气技术》:010-63256943
邮箱:dianqijishu@126.com
编务:010-63256994;订阅:010-63256817
广告合作:010-63256867/6838