查看原文
其他

【好文推荐】分频输电系统用大功率直驱永磁游标发电机槽极组合研究

CES TEMS编辑部 电工技术学报 2023-09-23






分频输电系统用大功率直驱永磁游标发电机槽极组合研究

Research on Slot-pole Combination in High-Power Direct-Drive PM Vernier Generator for Fractional Frequency Transmission System

Authors:Zhidong Yuan, Shaofeng Jia,  Deliang Liang, Xiuli Wang,  Yong Yang

DOI: 10.30941/CESTEMS.2022.00056

https://ieeexplore.ieee.org/document/10004930



01

摘要


轻量化是海上风力发电机的重要需求,提高直驱风力发电机的转矩密度,将有助于分频输电系统和海上风电产业的进一步发展。基于磁场调制原理运行的永磁游标电机已被证明具有转矩密度大、结构简单和可靠性高等特性,但是在大功率直驱风力发电机领域,相关研究还较少。本文结合直驱风力发电机的结构特点,从磁场调制效应的角度出发,研究不同极比和磁极数对分频直驱风力发电机的影响,为风力发电机的设计提供参考

02

创新点


结合直驱风力发电机的结构特点,研究磁场调制效应在大功率直驱风力发电机中的应用,主要研究了不同极比和磁极数对分频直驱风力发电机性能的影响,为风力发电机的设计提供参考。

03

主要内容

  • 不同极比对发电机性能的影响研究

极比(PR)是永磁游标电机的一个重要参数,理论上PR越,电机产生转矩的能力越强。本节设计和对比了具有不同PR的永磁游标风力发电机,其槽极组合如表1所示,电机模型如图1所示。通过有限元计算得到电机的各种性能,其中齿槽转矩和负载转矩如图2和图3所示,空载和负载气隙径向磁密对比如图4和图5所示,负载磁密分布如图6所示。

表1 不同极比的槽极配合设计


图1 不同极比的风力发电机单元模型

(分别为1/141/101/351/14模型)


图2 不同极比方案的齿槽转矩对比图

图3 不同极比方案的负载转矩对比图

图4 不同极比方案的空载气隙径向磁密对比

图5 不同极比方案的负载气隙径向磁密对比

图6 不同极比方案的磁密分布图

2对比了不同方案负载工况下的电磁性能,表3列出了各部件的重量对比。为得出最佳PR,本文采用离差标准化对多个指标进行综合比较,最终得出PR3.5的方案综合性能较优。

表2 不同极比方案的电磁性能比较

表3 不同极比方案的材料用量对比

  • 不同磁极数对发电机性能的影响研究

对于直驱风力发电机而言,磁极数的选择范围可以从几十到几百,因此磁极数的优化具有重要意义。本文选择极比为3.5的发电机,设计了磁极数不同的四种方案进行对比,其槽极组合如表4所示。各方案的齿槽转矩和负载转矩如图7和图8所示,空载和负载气隙径向磁密对比如图9和图10所示。

表4 不同磁极数的槽极配合设计

图7 不同磁极数方案的齿槽转矩对比

图8 不同磁极数方案的负载转矩对比

图9 不同磁极数方案的空载气隙径向磁密

图10 不同磁极数方案负载气隙径向磁密

5总结了不同方案的电磁性能,表6比较了各部件的重量以及转矩密度。综合考虑运行转速、转矩密度、齿槽转矩、功率因数、转矩波动等参数,本文最终推荐90140极方案。

表5 不同磁极数方案的电磁性能比较

表7 不同磁极数方案的材料用量及转矩密度对比


04

结论


本文结合直驱风力发电机的结构特点,研究了磁场调制效应在大功率直驱风力发电机中的应用,主要研究了不同极比和磁极数对风力发电机性能的影响,并得出其中一些影响规律,为风力发电机的设计提供参考。








引用本文







Z. Yuan, S. Jia, D. Liang, X. Wang and Y. Yang, "Research on Slot-pole Combination in High-power Direct-drive PM Vernier Generator for Fractional Frequency Transmission System," in CES Transactions on Electrical Machines and Systems, vol. 6, no. 4, pp. 445-453, December 2022, doi: 10.30941/CESTEMS.2022.00056.








本文作者







Zhidong Yuan was born in Sichuan, China. He received the B.Eng. degree from Zhengzhou University, China, in 2021. He is currently pursuing the M.S. degree in electrical engineering in Xi’an Jiaotong University, Xi’an, China. His research interests include design and optimization of novel permanent magnet and reluctance machines.

Shaofeng Jia (S’14–M’17-SM’21) was born in Shaanxi, China. He received the B.Eng. degree from Xi’an Jiaotong University, Xi’an, China, in 2012, and the Ph.D. degree from the Huazhong University of Science and Technology, Wuhan, China, in 2017, both in electrical engineering. He is currently an Associate Professor with the School of Electrical Engineering, Xi’an Jiaotong University. He is the Author/Co-author of about 70 IEEE technical papers. His research interests include design and control of novel permanent magnet and reluctance machines.


Deliang Liang (M’11–SM’14) received the B.S., M.S., and Ph.D. degrees in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 1989, 1992, and 1996, respectively. From 2001 to 2002, he was a Visiting Scholar in the Science Solution International Laboratory, Tokyo, Japan. Since 1999, he has been in the Department of Electrical Engineering, Xi’an Jiaotong University, where he is currently a Professor. His current research interests include optimal design, control, and simulation of electrical machines, and electrical machine technology in renewable energy.


Xiuli Wang (SM) received the B.S., M.S., and Ph.D. degrees in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 1982, 1985, and 1997, respectively, where she is currently a Professor with the School of Electrical Engineering. Her current research interests include power market, reliability assessment of power system, and integration of renewable power.


Yong Yang was born in Gansu, China. He received the B.Eng. degree from North China Electric Power University, China, in 1995. Currently, he is the director of State Grid Gansu Electric Power Company Electric Power Research Institute, Lanzhou, China. His current research interests include power system analysis, relay protection, and renewable energy grid-connected technology.



推荐阅读

🔗 抢先看 | CES TEMS 2023年第1期目次及摘要

🔗 【好文推荐】共中性点双三相永磁电机的零序电流抑制技术

🔗 欢迎报名参加2023中关村论坛系列活动—中国国际新能源及电力科技发展论坛

🔗 填补空白!中国电工技术学会团体标准《质子交换膜水电解制氢系统性能试验方法》

🔗 高校电气电子工程创新大赛往届获奖作品展播(第11期)|新型低频宽带非线性电磁式振动能量收集系统设计

🔗 网络首发 | 《电工技术学报》2023年4月10日更新(20篇)




中国电工技术学会
新媒体平台




学会官方微信

电工技术学报

CES电气



学会官方B站

CES TEMS

今日头条号



学会科普微信

新浪微博

抖音号


联系我们

☎️ 《电工技术学报》:010-63256949/6981;邮箱:dgjsxb@vip.126.com

☎️ 《电气技术》:010-63256943;邮箱:dianqijishu@126.com

☎️ 《中国电工技术学会电机与系统学报(CES TEMS)》:电话:010-63256823;邮箱:cestems@126.com

☎️ 编务:010-63256994

☎️ 订阅:010-63256817

☎️ 商务合作:010-63256867/6838

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存