『微课堂』X射线球管究竟如何工作?
本期内容我们将跟随graham galloway先生学到医用X射线系统的球管是如何工作的。是不是第一次看到这样的视频?别着急,我们还会整理更多酷酷的医疗视频给广大临床工作者,这也是一个系列节目
https://v.qq.com/txp/iframe/player.html?vid=q0179vpj1kg&width=500&height=375&auto=0
graham galloway先生
Welcome back! In this section, we are going to look at the core of our X ray system. The source of X rays—the X ray tube. X rays with a high speed electronic heats the medal target, only 1% of the energy in the electrons bay is converted to phonotrons. The rest is converted to heat. So producing heat and assorting vacuum is a problem that is really hard to get rid of it. A large anode can be used to absorb the heat, but this relays on the conduction. If the conduction is not enough, the anode is rotated. A new surface is continually exposed to electronic bay. By the time anode rotates to 300-600 degrees, that’s about the anode had the chance to cool down. So let it stop and have a look at the real X ray tube. This is a glass tube, which must contain a high vacuum. Otherwise, the electrons will create more molecular cloud of the air, losing energy. This end here, we have a hardware cathode. The thermometric process without rotate of the electrons, which accelerated toward the anode which between 13 to 100 kilowatt relative to the cathode. When the electronic heats the anode, it is decelerated as it collects the electrons in the middle. As it decelerates, it loses energy, which is related next to the X ray. The anode directs straightly towards this window. Here we have this end, the moniter which rotates the anode. Let us now go to a diagrammatic diction of the rotating of X ray tube. The cathode is heated to release the electrons. Heats are accelerated by high voltage towards the anode, which is possibly charged relative to cathode. This whole process need to be conducted within a high vacuum. Otherwise, the electrons will strike moleculars and thereby lose the energy before they reach the anode. When the high electrons strike the anode, they release energy. Some of the energy is released to X rays. But most is converted to heat. To prevent the anode from melting, it is continuously rotating. Besides the hot spot moves away from the electrons bay, it then has the time to cool down before it gets back to the position in the bay of electrons.
译文如下:
欢迎回来!本章我们将探讨X射线系统的核心,X射线的来源——X射线管。当X射线中高速运转的电流加热金属器皿,那么只有百分之一的能量会转化为电子,剩下的便转化为热量。因此,产生热量和保持真空是我们一直难以摆脱的两个难题。一个大型的阳极可以被用来吸收热量,但是这也必须根据传导而定。如果热传导不足,那么阳极就会被迫旋转,一个新的表面就会一直暴露在电子舱门。当阳极旋转速度达到300到600度时,阳极就有机会冷却下来。现在,我们来看一看真正的X射线管。这是一个玻璃管,必须保持在高度的真空下.....否则,电子就会在管内空气的作用下产生更多的分子,进而损耗能量。管的这一端有一个硬件阴极,温度变化的过程与电子的旋转并无关系, 电子在外电源作用下加速运动,加速到十三到一百千瓦,离开阳极,向阴极流去。当电流加热阳极,阳极便会吸收中部的电子,进而减慢旋转速度。在减速过程中会损耗能量,影响X射线。阳极会直接流向这扇窗户。在管的另一端有一个负责旋转阳极的监测仪。现在,我们来看一下图解说明,看X射线管到底是如何运转的。阴极加热释放电子,在高电压下,热量加速向阳极流去,而阳极也有可能与阴极是互补的。整个过程必须在真空里进行传导。否则,电子将撞击分子,并在流向阳极的过程中损耗能量。当高电子撞击阳极时,也会释放能量,其中一部分能量产生X射线,但大部分都转化为热量。为了防止阳极消解,电子会持续旋转。当热点逐渐远离电子舱门,它就会在其返回原位置前冷却下来。
微课堂是我们的最新专业服务板块,主要给临床医生和医疗器械相关从业人员(让你迅速从小白变大神的有力武器)提供全球最新的医疗科技、新产品视频。这些专业医疗器械产品相关技术的最新视频,未来也会扩展到其它学科领域,按照不同学科细分子频道。
如果你的英文足够好,愿意帮助大家(翻译成中文)共同提高,也愿意加入我们成为志愿者,可以后台和我们联系。
如需要转载 请后台联系我们,或者发邮件至4008228766@qixieke.com
相关阅读