查看原文
其他

论文周报 | 推荐系统领域最新研究进展

ML_RSer 机器学习与推荐算法 2022-12-14
嘿,记得给“机器学习与推荐算法”添加星标

本文精选了上周(0620-0626)最新发布的13篇推荐系统相关论文,方向主要包括序列推荐[6,7]、强化学习推荐[6]、基于隐私保护的推荐算法[2,8]、推荐系统基准库[4]、对话推荐系统[13]、跨域推荐系统[5,6]、推荐系统的托攻击[10]。以下整理了论文标题以及摘要,如感兴趣可移步原文精读。

  • 1. Urdu News Article Recommendation Model using Natural Language Processing  Techniques

  • 2. ReuseKNN: Neighborhood Reuse for Privacy-Aware Recommendations

  • 3. Recommendations for Systematic Research on Emergent Language

  • 4. DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

  • 5. Adaptive Domain Interest Network for Multi-domain Recommendation

  • 6. Reinforcement Learning-enhanced Shared-account Cross-domain Sequential  Recommendation

  • 7. Time Interval-enhanced Graph Neural Network for Shared-account  Cross-domain Sequential Recommendation

  • 8. LightFR: Lightweight Federated Recommendation with Privacy-preserving  Matrix Factorization

  • 9. On the Generalizability and Predictability of Recommender Systems

  • 10. Shilling Black-box Recommender Systems by Learning to Generate Fake User  Profiles

  • 11. Synthetic Data-Based Simulators for Recommender Systems: A Survey

  • 12. Scalable Neural Data Server: A Data Recommender for Transfer Learning

  • 13. Towards Unified Conversational Recommender Systems via  Knowledge-Enhanced Prompt Learning

1. Urdu News Article Recommendation Model using Natural Language Processing  Techniques

Syed Zain Abbas, Dr. Arif ur Rahman, Abdul Basit Mughal, Syed Mujtaba Haider

https://arxiv.org/abs/2206.11862

There are several online newspapers in urdu but for the users it is difficult to find the content they are looking for because these most of them contain irrelevant data and most users did not get what they want to retrieve. Our proposed framework will help to predict Urdu news in the interests of users and reduce the users searching time for news. For this purpose, NLP techniques are used for pre-processing, and then TF-IDF with cosine similarity is used for gaining the highest similarity and recommended news on user preferences. Moreover, the BERT language model is also used for similarity, and by using the BERT model similarity increases as compared to TF-IDF so the approach works better with the BERT language model and recommends news to the user on their interest. The news is recommended when the similarity of the articles is above 60 percent.

2. ReuseKNN: Neighborhood Reuse for Privacy-Aware Recommendations

Peter Müllner, Markus Schedl, Elisabeth Lex, Dominik Kowald

https://arxiv.org/abs/2206.11561

User-based KNN recommender systems (UserKNN) utilize the rating data of a target user's k nearest neighbors in the recommendation process. This, however, increases the privacy risk of the neighbors since their rating data might be exposed to other users or malicious parties. To reduce this risk, existing work applies differential privacy by adding randomness to the neighbors' ratings, which reduces the accuracy of UserKNN. In this work, we introduce ReuseKNN, a novel privacy-aware recommender system. The main idea is to identify small but highly reusable neighborhoods so that (i) only a minimal set of users requires protection with differential privacy, and (ii) most users do not need to be protected with differential privacy, since they are only rarely exploited as neighbors. In our experiments on five diverse datasets, we make two key observations: Firstly, ReuseKNN requires significantly smaller neighborhoods, and thus, fewer neighbors need to be protected with differential privacy compared to traditional UserKNN. Secondly, despite the small neighborhoods, ReuseKNN outperforms UserKNN and a fully differentially private approach in terms of accuracy. Overall, ReuseKNN's recommendation process leads to significantly less privacy risk for users than in the case of UserKNN

3. Recommendations for Systematic Research on Emergent Language

Brendon Boldt, David Mortensen

https://arxiv.org/abs/2206.11302

Emergent language is unique among fields within the discipline of machine learning for its open-endedness, not obviously presenting well-defined problems to be solved. As a result, the current research in the field has largely been exploratory: focusing on establishing new problems, techniques, and phenomena. Yet after these problems have been established, subsequent progress requires research which can measurably demonstrate how it improves on prior approaches. This type of research is what we call systematic research; in this paper, we illustrate this mode of research specifically for emergent language. We first identify the overarching goals of emergent language research, categorizing them as either science or engineering. Using this distinction, we present core methodological elements of science and engineering, analyze their role in current emergent language research, and recommend how to apply these elements.

4. DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation

Zhu Sun, Hui Fang, Jie Yang, Xinghua Qu, Hongyang Liu, Di Yu, Yew-Soon Ong, Jie Zhang

https://arxiv.org/abs/2206.10848

Recently, one critical issue looms large in the field of recommender systems -- there are no effective benchmarks for rigorous evaluation -- which consequently leads to unreproducible evaluation and unfair comparison. We, therefore, conduct studies from the perspectives of practical theory and experiments, aiming at benchmarking recommendation for rigorous evaluation. Regarding the theoretical study, a series of hyper-factors affecting recommendation performance throughout the whole evaluation chain are systematically summarized and analyzed via an exhaustive review on 141 papers published at eight top-tier conferences within 2017-2020. We then classify them into model-independent and model-dependent hyper-factors, and different modes of rigorous evaluation are defined and discussed in-depth accordingly. For the experimental study, we release DaisyRec 2.0 library by integrating these hyper-factors to perform rigorous evaluation, whereby a holistic empirical study is conducted to unveil the impacts of different hyper-factors on recommendation performance. Supported by the theoretical and experimental studies, we finally create benchmarks for rigorous evaluation by proposing standardized procedures and providing performance of ten state-of-the-arts across six evaluation metrics on six datasets as a reference for later study. Overall, our work sheds light on the issues in recommendation evaluation, provides potential solutions for rigorous evaluation, and lays foundation for further investigation.

5. Adaptive Domain Interest Network for Multi-domain Recommendation

Yuchen Jiang, Qi Li, Han Zhu, Jinbei Yu, Jin Li, Ziru Xu, Huihui Dong, Bo Zheng

https://arxiv.org/abs/2206.09672

Industrial recommender systems usually hold data from multiple business scenarios and are expected to provide recommendation services for these scenarios simultaneously. In the retrieval step, the topK high-quality items selected from a large number of corpus usually need to be various for multiple scenarios. Take Alibaba display advertising system for example, not only because the behavior patterns of Taobao users are diverse, but also differentiated scenarios' bid prices assigned by advertisers vary significantly. Traditional methods either train models for each scenario separately, ignoring the cross-domain overlapping of user groups and items, or simply mix all samples and maintain a shared model which makes it difficult to capture significant diversities between scenarios. In this paper, we present Adaptive Domain Interest network that adaptively handles the commonalities and diversities across scenarios, making full use of multi-scenarios data during training. Then the proposed method is able to improve the performance of each business domain by giving various topK candidates for different scenarios during online inference. Specifically, our proposed ADI models the commonalities and diversities for different domains by shared networks and domain-specific networks, respectively. In addition, we apply the domain-specific batch normalization and design the domain interest adaptation layer for feature-level domain adaptation. A self training strategy is also incorporated to capture label-level connections across domains.ADI has been deployed in the display advertising system of Alibaba, and obtains 1.8% improvement on advertising revenue.

6. Reinforcement Learning-enhanced Shared-account Cross-domain Sequential  Recommendation

Lei Guo, Jinyu Zhang, Tong Chen, Xinhua Wang, Hongzhi Yin

https://arxiv.org/abs/2206.08088

Shared-account Cross-domain Sequential Recommendation (SCSR) is an emerging yet challenging task that simultaneously considers the shared-account and cross-domain characteristics in the sequential recommendation. Existing works on SCSR are mainly based on Recurrent Neural Network (RNN) and Graph Neural Network (GNN) but they ignore the fact that although multiple users share a single account, it is mainly occupied by one user at a time. This observation motivates us to learn a more accurate user-specific account representation by attentively focusing on its recent behaviors. Furthermore, though existing works endow lower weights to irrelevant interactions, they may still dilute the domain information and impede the cross-domain recommendation. To address the above issues, we propose a reinforcement learning-based solution, namely RL-ISN, which consists of a basic cross-domain recommender and a reinforcement learning-based domain filter. Specifically, to model the account representation in the shared-account scenario, the basic recommender first clusters users' mixed behaviors as latent users, and then leverages an attention model over them to conduct user identification. To reduce the impact of irrelevant domain information, we formulate the domain filter as a hierarchical reinforcement learning task, where a high-level task is utilized to decide whether to revise the whole transferred sequence or not, and if it does, a low-level task is further performed to determine whether to remove each interaction within it or not. To evaluate the performance of our solution, we conduct extensive experiments on two real-world datasets, and the experimental results demonstrate the superiority of our RL-ISN method compared with the state-of-the-art recommendation methods.

7. Time Interval-enhanced Graph Neural Network for Shared-account  Cross-domain Sequential Recommendation

Lei Guo, Jinyu Zhang, Li Tang, Tong Chen, Lei Zhu, Hongzhi Yin

https://arxiv.org/abs/2206.08050

Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors. They are not expressive enough to capture the relationships among multiple entities in SCSR. 2) All existing methods bridge two domains via knowledge transfer in the latent space, and ignore the explicit cross-domain graph structure. 3) None existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely TiDA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn userspecific node representations. To fully account for users' domainspecific preferences on items, two effective attention mechanisms are further developed to selectively guide the message passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing, and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.

8. LightFR: Lightweight Federated Recommendation with Privacy-preserving  Matrix Factorization

Honglei Zhang, Fangyuan Luo, Jun Wu, Xiangnan He, Yidong Li

https://arxiv.org/abs/2206.11743

Federated recommender system (FRS), which enables many local devices to train a shared model jointly without transmitting local raw data, has become a prevalent recommendation paradigm with privacy-preserving advantages. However, previous work on FRS performs similarity search via inner product in continuous embedding space, which causes an efficiency bottleneck when the scale of items is extremely large. We argue that such a scheme in federated settings ignores the limited capacities in resource-constrained user devices (i.e., storage space, computational overhead, and communication bandwidth), and makes it harder to be deployed in large-scale recommender systems. Besides, it has been shown that the transmission of local gradients in real-valued form between server and clients may leak users' private information. To this end, we propose a lightweight federated recommendation framework with privacy-preserving matrix factorization, LightFR, that is able to generate high-quality binary codes by exploiting learning to hash techniques under federated settings, and thus enjoys both fast online inference and economic memory consumption. Moreover, we devise an efficient federated discrete optimization algorithm to collaboratively train model parameters between the server and clients, which can effectively prevent real-valued gradient attacks from malicious parties. Through extensive experiments on four real-world datasets, we show that our LightFR model outperforms several state-of-the-art FRS methods in terms of recommendation accuracy, inference efficiency and data privacy.

9. On the Generalizability and Predictability of Recommender Systems

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, John P. Dickerson, Colin White

https://arxiv.org/abs/2206.11886

While other areas of machine learning have seen more and more automation, designing a high-performing recommender system still requires a high level of human effort. Furthermore, recent work has shown that modern recommender system algorithms do not always improve over well-tuned baselines. A natural follow-up question is, "how do we choose the right algorithm for a new dataset and performance metric?" In this work, we start by giving the first large-scale study of recommender system approaches by comparing 18 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find that the best algorithms and hyperparameters are highly dependent on the dataset and performance metric, however, there are also strong correlations between the performance of each algorithm and various meta-features of the datasets. Motivated by these findings, we create RecZilla, a meta-learning approach to recommender systems that uses a model to predict the best algorithm and hyperparameters for new, unseen datasets. By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application. We not only release our code and pretrained RecZilla models, but also all of our raw experimental results, so that practitioners can train a RecZilla model for their desired performance metric:

10. Shilling Black-box Recommender Systems by Learning to Generate Fake User  Profiles

Chen Lin, Si Chen, Meifang Zeng, Sheng Zhang, Min Gao, Hui Li

https://arxiv.org/abs/2206.11433

Due to the pivotal role of Recommender Systems (RS) in guiding customers towards the purchase, there is a natural motivation for unscrupulous parties to spoof RS for profits. In this paper, we study Shilling Attack where an adversarial party injects a number of fake user profiles for improper purposes. Conventional Shilling Attack approaches lack attack transferability (i.e., attacks are not effective on some victim RS models) and/or attack invisibility (i.e., injected profiles can be easily detected). To overcome these issues, we present Leg-UP, a novel attack model based on the Generative Adversarial Network. Leg-UP learns user behavior patterns from real users in the sampled “templates” and constructs fake user profiles. To simulate real users, the generator in Leg-UP directly outputs discrete ratings. To enhance attack transferability, the parameters of the generator are optimized by maximizing the attack performance on a surrogate RS model. To improve attack invisibility, Leg-UP adopts a discriminator to guide the generator to generate undetectable fake user profiles. Experiments on benchmarks have shown that Leg-UP exceeds state-of-the-art Shilling Attack methods on a wide range of victim RS models. The source code of our work is available at:

11. Synthetic Data-Based Simulators for Recommender Systems: A Survey

Elizaveta Stavinova, Alexander Grigorievskiy, Anna Volodkevich, Petr Chunaev, Klavdiya Bochenina, Dmitry Bugaychenko

https://arxiv.org/abs/2206.11338

This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation (M&S) of interactions between users and recommender systems and applications of the M&S to the performance improvement of industrial recommender engines. We start with the motivation behind the development of frameworks implementing the simulations -- simulators -- and the usage of them for training and testing recommender systems of different types (including Reinforcement Learning ones). Furthermore, we provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness and moreover make a summary of the simulators found in the research literature. Besides other things, we discuss the building blocks of simulators: methods for synthetic data (user, item, user-item responses) generation, methods for what-if experimental analysis, methods and datasets used for simulation quality evaluation (including the methods that monitor and/or close possible simulation-to-reality gaps), and methods for summarization of experimental simulation results. Finally, this survey considers emerging topics and open problems in the field.

12. Scalable Neural Data Server: A Data Recommender for Transfer Learning

Tianshi Cao, Sasha Doubov, David Acuna, Sanja Fidler

https://arxiv.org/abs/2206.09386

Absence of large-scale labeled data in the practitioner's target domain can be a bottleneck to applying machine learning algorithms in practice. Transfer learning is a popular strategy for leveraging additional data to improve the downstream performance, but finding the most relevant data to transfer from can be challenging. Neural Data Server (NDS), a search engine that recommends relevant data for a given downstream task, has been previously proposed to address this problem. NDS uses a mixture of experts trained on data sources to estimate similarity between each source and the downstream task. Thus, the computational cost to each user grows with the number of sources. To address these issues, we propose Scalable Neural Data Server (SNDS), a large-scale search engine that can theoretically index thousands of datasets to serve relevant ML data to end users. SNDS trains the mixture of experts on intermediary datasets during initialization, and represents both data sources and downstream tasks by their proximity to the intermediary datasets. As such, computational cost incurred by SNDS users remains fixed as new datasets are added to the server. We validate SNDS on a plethora of real world tasks and find that data recommended by SNDS improves downstream task performance over baselines. We also demonstrate the scalability of SNDS by showing its ability to select relevant data for transfer outside of the natural image setting.

13. Towards Unified Conversational Recommender Systems via  Knowledge-Enhanced Prompt Learning

Xiaolei Wang, Kun Zhou, Ji-Rong Wen, Wayne Xin Zhao

https://arxiv.org/abs/2206.09363

Conversational recommender systems (CRS) aim to proactively elicit user preference and recommend high-quality items through natural language conversations. Typically, a CRS consists of a recommendation module to predict preferred items for users and a conversation module to generate appropriate responses. To develop an effective CRS, it is essential to seamlessly integrate the two modules. Existing works either design semantic alignment strategies, or share knowledge resources and representations between the two modules. However, these approaches still rely on different architectures or techniques to develop the two modules, making it difficult for effective module integration.


欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

2022推荐系统序列建模的趋势总结

论文周报 | 推荐系统领域最新研究进展

上交最新深度元学习推荐算法综述

快手+中科大 | 全曝光推荐数据集KuaiRec 2.0版本

精排模型-从MLP到行为序列:DIN、DIEN、MIMN、SIM、DSIN

由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存