推荐|约翰霍普金斯大学计算机科学系Jason Eisner教授总结了一系列的自然语言处理优秀教学资源
>>>>>>欢迎投稿:news@top25.cn<<<<<<
全球人工智能
下面是约翰霍普金斯大学计算机科学系Jason Eisner教授总结的一系列的自然语言处理优秀教学资源,希望对大家有用:
The difference between natural language processing (NLP) and computational linguistics (CL)
http://www.quora.com/What-is-the-difference-between-natural-language-processing-and-computational-linguistics/answer/Jason-Eisner?share=1
The difference between AI, ML, and NLP
http://www.quora.com/Whats-the-difference-between-Machine-Learning-AI-and-NLP/answer/Jason-Eisner?share=1
The difference between frequentists and Bayesians: A dialogue
http://www.quora.com/For-a-non-expert-what-is-the-difference-between-Bayesian-and-frequentist-approaches/answer/Jason-Eisner?share=1
The three cultures of machine learning
https://www.cs.jhu.edu/~jason/tutorials/ml-simplex.html
Probability crash course (+) — how to build simple probabilistic models
http://videolectures.net/hltss2010_eisner_plm/video/1/
Interactive lessons in — nifty visualization toy with sliders
Latent-variable log-linear modeling
http://www.quora.com/What-is-the-latent-log-linear-model-with-latent-variables-and-how-do-you-train-such-a-model/answer/Jason-Eisner?share=1
Interactive visualization of kernel SVMs (by Guillaume Caron: I'm only hosting it
https://www.cs.jhu.edu/~jason/tutorials/SVMApplet/
Lagrange multipliers — high-level explanation
http://www.umiacs.umd.edu/~resnik/ling848_fa2004/lagrange.html
Variational inference — high-level explanation
https://www.cs.jhu.edu/~jason/tutorials/variational.html
Belief propagation (slides) — high-level explanation; ACL 2014/2015 tutorial
https://www.cs.jhu.edu/~jason/tutorials/bp.ppt
http://www.cs.jhu.edu/~mrg/bp-tutorial/
Hidden Markov Models (video+more) — a fun detailed example
https://www.cs.jhu.edu/~jason/papers/#eisner-2002-tnlp
Back-propagation (animated slides+video) — high-level explanation; also see suggested readings at top of
https://www.cs.jhu.edu/~jason/tutorials/backprop-pool.pptx
Understanding the inside-outside and forward-backward algorithms -- they're just backprop
http://cs.jhu.edu/~jason/papers/#spnlp16
An annotated drawing of an LSTM unit (based on Graves 2012)
https://www.cs.jhu.edu/~jason/tutorials/lstm.png
https://www.cs.toronto.edu/~graves/preprint.pdf
Bayesian generative modeling (video+) — works up to topic models and Bayesian HMMs
http://techtalks.tv/events/76/?page=2
Minimum spanning tree (tutorial paper) — deep and clear coverage of how 7 algorithms were designed
http://cs.jhu.edu/~jason/papers/#eisner-1997-mst
Convert a formula from SAT to CNF-SAT (pseudocode and discussion)
https://www.cs.jhu.edu/~jason/tutorials/convert-to-CNF.html
Competitive grammar writing exercise, with software
https://www.cs.jhu.edu/~jason/papers/#smith-eisner-2008-cgw
重磅|Google 扔下两枚核弹,炸掉无数独角兽数千亿美金!