新北师大版四年级数学下全册知识要点归纳
1
第一单元 小数的意义和加减法
1、小数的意义:
把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千份之几……的数,叫小数。
2、分母是10、100、1000……的分数可以用小数表示
表示十分之几的小数是一位小数
表示百分之几的小数是两位小数
表示千分之几的小数是三位小数……
3、小数的组成:
以小数点为界,小数由整数部分和小数部分组成。
4、小数的数位、计算单位、进率:
① 小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……与整数一样,小数每相邻两个计数单位之间的进率是10。
② 小数部分最大的计算单位是十分之一,小数部分没有最小的计数单位。
③ 小数的数位是无限的。
④ 在一个小数中,小数点后面含有几个小数数位,它就是几位小数。小数部分末尾的零也要计入其中。
5、小数的数位顺序表
整数部分 | 小数点 | 小数部分 | ||||||||||
数位 | … | 万位 | 千位 | 百位 | 十位 | 个位 | · | 十分位 | 百分位 | 千分位 | 万分位 | … |
计数单位 | … | 万 | 千 | 百 | 十 | 一(个) | 十分之一 | 百分之一 | 千分之一 | 万分之一 | … |
6、小数的读写:
读小数时,从左往右,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分顺次读出每一个数位上的数字,即使是连续的0,也要依次读出来。
写小数时,也是从左往右,整数部分按照整数的写法来写(整数部分是零的写作“0”),小数点点在个位的右下角,小数部分顺次写出每一个数位上的数字。
7、理解0.1与0.10的区别联系:
区别:0.1表示1个0.1、0.10表示10个0.01、意义不同。
联系:0.1=0.10两个数大小相等。运用小数的基本性质可以不改变数的大小,改写小数或化简小数。
8、纯小数和带小数
整数部分是0的小数叫做纯小数;
整数部分不为0的小数叫做带小数。
9、测量活动(名数的改写)
① 1分米=0.1米 1厘米=0.01米 1克=0.001千克……学会低级单位与高级单位之间的互化(长度单位,面积单位,重量单位……)。
低级单位单名数化为高级单位时,先将这个低级单位的数改写成分母是10、100、1000……的分数,再把分数写成小数的形式,并在后面加上所要化成的高级单位的名称。
② 复名数改单名数:抄相同,改不同。(相同的单位抄在整数部分,不相同的单位按照上面的改写方法写在小数部分)。
③ 其他改写方法:
单名数互化:
a.低级单位名数÷进率=高级单位名数。
b.高级单位名数×进率=低级单位名数。
复名数与单名数之间互化:
抄相同,改不同(同单名数互化方法)。
如:3米2厘米=( )米。相同的单位米,抄在整数部分,整数部分是3;改写不同:2厘米÷100=0.02米(厘米与米之间的进率是100)
④ 生活中常用的单位:
10、比大小(比较小数的大小)
① 比较两个小数大小的方法:先看整数部分,整数部分大的小数就大;整数部分相同,再看小数部分的十分位,十分位上数字大的小数就大……
② 把几个小数按顺序排列:要先比较它们的大小。再按照题目的要求按顺序排列。当单位不统一的几个数量比较大小时,要先将这几个数量的单位统一,再按小数大小比较方法进行比较,最后答题应按照最目中给的原数进行排列顺序。
11、小数加、减法的意义:
小数加减法的意义与整数加减法的意义相同。
①小数加法的意义:把两个数合并成一个数的运算。
②小数减法的意义:已知两个加数的和与其中的一个加数,求另一个加数的运算。
12、小数的基本性质:
小数末尾添上“0”或去掉“0”,小数的大小不变。
13、小数加减计算法则:
小数点对齐;按照整数加减法的法则计算。从末位算起;哪一位上的数相加满十,要向前一位进一。如果被减数的小数末尾位数不够,可以添“0”再减,哪一位上的数不够减,要从前一位退一,在本位上加十再减;得数的小数点要对齐横线上的小数点。
14、小数加减混合运算
① 和整数加减混合运算的顺序相同。同级运算,从左往右;有括号的,先里后外。
② 整数加、减法的运算定律同样适用于小数加减法。例如加法的结合律,交换律。
15、小数的加减法要注意:
小数点要对齐,也就是将数位要对齐,得数的末尾有“0”,一定要把“0”去掉。
2
第二单元 认识三角形和四边形
1、按照不同的标准给已知图形进行分类
① 按平面图形和立体图形分;
② 按平面图形是否由线段围成来分的;
③ 按图形的边数来分。
2、平行四边形和三角形的性质:
三角形具有稳定性,平行四边形具有易变形(不稳定性)的特点。
3、把三角形按照不同的标准分类,并说明分类依据;
① 按角分,分为:直角三角形、锐角三角形、钝角三角形
其本质特征:
三个角都是锐角的三角形是锐角三角形;
有一个角是直角的三角形是直角三角形;
有一个角是钝角的三角形是钝角三角形。
② 按边分,分为:等腰三角形、等边三角形、任意三角形。
有两条边相等的三角形是等腰三角形;
三条边都相等的三角形是等边三角形。(等边三角形是特殊的等腰三角形)
4、三角形内角和、三角形边的关系
① 任意一个三角形内角和等于180度。
② 三角形任意两边之和大于第三边。已知两条边的长度,那么第三边的长度要大于已知两边之差小于两边只差。
③ 能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。
④ 四边形的内角和是360°
⑤ 用2个相同的三角形可以拼成一个平行四边形。
⑥ 用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
⑦ 用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
5、四边形的分类
① 由四条线段围成的封闭图形叫作四边形。四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。
② 长方形、正方形是特殊的平行四边形。正方形是特殊的长方形。
③ 正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。
a 正方形有4条对称轴。
b 长方形有2条对称轴。菱形有2条对称轴。
c 等腰梯形有1条对称轴。
d 等边三角形有3条对称轴。
e 圆有无数条对称轴。
3
第三单元 小数乘法
1、小数乘法的意义:
① 小数乘小数的意义表示求一个数的十分之几、百分之几……是多少。
② 小数乘整数的意义与整数乘法的意义相同。可以说是求几个相同加数和的简便运算,也可以说是求这个小数的整数倍是多少。
如:2.3×5表示求5个2.3的和是多少。也可以表示求2.3的5倍是多少。
2、乘法的变化规律:
① 在乘法里,一个因数不变,另外一个因数扩大(或缩小)a倍,积也扩大(或缩小)a倍。
② 在乘法里,一个因数扩大a 倍,另外一个因数扩大b倍,积就扩大a×b倍。
③ 在乘法里,一个因数缩小a 倍,另外一个因数缩小b倍,积就缩小a×b倍。
3、积不变规律:
在乘法里,一个因数扩大a 倍,另外一个因数缩小a倍,积不变。
4、小数乘整数计算方法:
① 先把小数扩大成整数
② 按整数乘法乘法法则计算出积
③ 看被乘数有几位小数,就从积的右边起数出几位点上小数点。
④ 若积的末尾有0可以去掉
5、小数乘小数的计算方法:
① 先把小数扩大成整数
② 按整数乘法乘法法则计算出积
③ 看积中有几位小数就从积的右边起数出几位,点上小数点。如果乘得的积的位数不够,要在前面用0补足。
6、小数四则混合运算
小数四则混合运算的运算顺序与整数四则混合运算的顺序相同:同级运算,从左往右;两级运算,先乘除后加减;有括号的,先算括号里的。
乘法的交换律、结合律、分配律同样适用于小数乘法,应用这些运算定律,可以使计算简便。
乘法交换律 a×b=b×a
乘法结合律 (a×b)×c=a×(b×c)
乘法分配律 a×(b+c)=a×b+a×c
a×(b—c)=a×b — a×c
7、积的近似数:
保留a位小数,就看第a+1位,再用四舍五入的方法取值。
保留整数:表示精确到个位,看十分位上的数;保留一位小数:表示精确到十分位,看百分位上的数;保留两位小数:表示精确到百分位,看千分位上的数;……
按实际需要用“四舍五入法”保留一定的小数位数,求积的近似值。
8、小数点位置移动引起小数大小变化的规律
① 小数点位置移动引起小数大小变化的规律:
小数点向左移动一位、两位、三位……这个数就缩小到原来的1/10 、1/100 、 1/1000……小数点向右移动一位、两位、三位……这个数就扩大到原来的10倍、100倍、1000倍……
② 小数点右移,位数不够时,要添“0”补位,小数点移动完后,整数最高位前边的“0”要去掉;
小数点左移,位数不够时,也用“0”补足,点上小数点,若整数部分没有数,用“0”表示,若小数末尾有0,根据小数的性质,应把末尾的“0”去掉。
③ 积的小数位数与乘数的小数位数的关系:在小数乘法中,两个乘数一共有几位小数,积就有几位小数。
④ 积的近似值的求法:一般要先算了正确的积,再根据题目要求或生活习惯用“四舍五入”
⑤ 比较大小:
① 一个数乘以一个大于1的数,积大于它本身。例如:6.5×1.5>6.5
② 一个数乘以一个等于1的数,积等于它本身。例如:6.5×1=6.5
③ 一个数乘以一个小于1的数,积小于它本身。例如:6.5×0.9<6.5
4
第四单元 观察物体
1、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
2、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
3、不同形状的物体,分别从正面、侧面、上面看,看到的形状有可能是相同的,也有可能是不同的。
4、方法指导:在不同位置观察由小正方体平摆的物体,并判断观察到物体的平面图,在哪一位置观察,就从哪一面数出小正方形的数量并确定摆出的形状,注意视线应垂直于所要观察的平面。
5
第五单元 认识方程
1、数量关系:
用字母或者含有字母的式子都可以表示数量,也可以表示数量关系。
2、用字母表示有关图形的计算公式:
①长方形周长公式:C=2(a+b)
②长方形面积公式:S=ab
③正方形周长公式:C=4a
④正方形面积公式:S=a²
3、用字母表示运算定律:
如果用a、b、c分别表示三个数,那么
①加法交换律a+b=b+a
②加法结合律(a+b)+c=a+(b+c)
③乘法交换律a×b=b×a
④乘法结合律(a×b)×c=a×(b×c)
⑤乘法分配律 (a+b) × c=a×c+b×c
(a-b)×c=a×c-b×c
⑥减法的运算性质a-b-c=a-(b+c)
⑦除法的运算性质a÷b÷c=a÷(b×c)
4、数字与字母乘积的表示法:
在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“•”表示或省略不写,数字一般都写在字母前面。数字1与字母相乘时,1省略不写,字母按顺序写。
如:a×b=ab、5×a=5a、1×a=a、a×a=a²
5、区别a²和2a的区别:
2a=2×a a²=a×a
6、方程的含义:
含有未知数的等式叫方程。
7、方程与等式的联系区别:
方程是等式,但等式却不都是方程。
8、等式性质一:
等式两边都加上(或减去)同一个数,等式仍然成立。
9、等式性质二:
等式两边都乘一个数(或除以一个不为0的数),等式仍然成立。
10、解方程的书写格式:
解方程前要先写一个“解”字和冒号;一步一脱式,每算一步,等号都要上、下对齐;表示未知数的字母一般都要放在等号的左侧。
11、解方程和方程的解
使方程左右两边相等的未知数的值叫作方程的解。求方程的解的过程叫作解方程。
12、看图列方程
关键是看懂图意,从中找出等量关系,然后再根据等量关系列出方程。在列方程时,把未知数尽量放在等式左边。
13、用方程解决实际问题(解应用题)
首先要用字母表示未知数,然后根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程)再解出来,最后检验,写出答语。
14、图形中的规律
① 摆n个三角形需要2n+1根小棒。
② 摆n个正方形需要3n+1根小棒。
6
第六单元 数据的表示和分析
1、条形统计图:
横向:用直条的长短表示,竖向表示类别,横向表示数量;
纵向:用直条的高矮表示,横向表示类别,竖向表示数量。
不同的统计图中1格表示的单位量是不同的,要结合具体的情况来判断1格表示几个单位。数据大,每1格所表示的单位量就多,数据小,每1格所表示的单位量就小。
条形统计图的特点:直观、方便、便于察看数量多少。
2、制作条形统计图的方法:
确定水平方向,标出项目;确定垂直方向代表的数量(1格代表的数量);根据数据的大小画出长度不同的直条;写出标题。
3、折线统计图的特点:
能获取数据变化情况的信息,并进行简单的预测。
4、折线统计图的方法:
在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
5、条形统计图与折线统计图的不同:
条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
6、平均数是一组数据平均水平的代表。
平均数=总数量÷数量个数
总数量=平均数×数量个数
数量个数=总数量÷平均数
7
本册补充知识点 常用数量关系
1、平均数关系式:
总数÷总份数=平均数
2、总数、份数、每份数关系式:
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
3、行程关系式:
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、购物问题关系式:
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、工程问题关系式:
工作效率×工作时间=工作量
工作量÷工作效率=工作时间
工作量÷工作时间=工作效率
6、相遇问题关系式:
速度和×相遇时间=相遇路程
相遇路程÷速度和=相遇时间
相遇路程÷相遇时间=速度和
7、加法关系式:
加数+加数=和
和-一个加数=另一个加数
8、减法关系式:
被减数-减数=差
被减数-差=减数
差+减数=被减数
9、乘法关系式:
乘数×乘数=积
积÷一个乘数=另一个乘数
10、除法关系式:
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
北师大版四年级数学下册知识点预习
一、小数的意义和加减法 (三年级上册已经学习过《元、角、分与小数》)
1、小数的意义:用来表示十分之几、百分之几、千分之几等分数的数。
2、表示十分之几的小数是一位小数,表示百分之几的小数是两位小数,千分之几的小数是三位小数……,例如:
3、读小数的时候,小数点的左边按读整数的方法读,小数点的右边依次读出每个数字。例如:33.14读作:三十三点一四。
4、小数部分的数位:从左往右依次为:十分位、百分位……(见下表);相邻数位之间的进率为10。数位顺序表:
数级 | 整数部分 | 小数点 | 小数部分 | ||||||||||
数位名称 | …… | 百万位 | 十万位 | 万位 | 千位 | 百位 | 十位 | 个位 | ● | 十分位 | 百分位 | 千分位 | …… |
计数单位 | …… | 百万 | 十万 | 万 | 千 | 百 | 十 | 一(个) | 十分之一 或0.1 | 百分之一 或0.01 | 千分之一 或0.001 | …… |
注:(1)小数部分最大的计数单位是十分之一,小数部分没有最小的计数单位。
(2)小数的数位是无限的。
(3)在一个小数中,小数点后面含有几个小数数位,它就是几位小数。小数部分末尾的零也要计入其中。
5、低级单位转化为高级单位:先将这个低级单位的数改写成分数的形式,再写成小数的形式。
6、单名数与复名数之间的互化:
单名数:由一个数和一个单位名称组成的名数叫做单名数。
复名数:由两个或两个以上的数及单位名称组成的名数叫做复名数。
单名数互化:①低级单位名数÷进率=高级单位名数。②高级单位名数×进率=低级单位名数。
(口诀:小单位化大单位,小数点向左移;大单位化小单位,小数点向右移;进率中有几个零,就移动几位;移到哪一位不够时,就添零再移。)
复名数化为单名数:口诀:抄相同,改不同。(相同的单位抄在整数部分,不相同的单位按照低级单位转化为高级单位的方法写在小数部分)。如:3米2厘米=( )米,相同的单位米,抄在整数部分,整数部分是3;
改写不同:2厘米=
5元6角7分=5.67元 3米4分米=3.4米 2千克500克=2500克
单名数化为复名数:2.04平方米=2平方米4平方分米 8.3元=8元3角 1500克=1千克500克=1.5千克
7、比较小数大小的方法:先看整数部分,整数部分大的小数就大。整数部分相同,再看小数部分的十分位,十分位上数字大的就大……
8、小数加减法的竖式计算方法:小数点对齐,也就是相同数位对齐,再按照整数加减法的法则进行计算(进位加法和退位减法的计算法则同整数加、减法的法则相同)。
>(2)一个数连续除以另外两个数,相当于除以那两个数的乘积,例如:200÷2÷4=200÷(2×4)。
注意:(1)小数部分的末尾加上“0”或去掉“0”小数的大小不变。如:0.2= 0.20 = 0.200=0.2000 =…… 1.05=1.050 =1.0500 =1.0500=……
(2)整数减去小数,可以在整数小数点的后面添上“0”,帮助计算。
9、小数混合运算的顺序与整数四则混合运算一样:先算小括号,再算中括号;先乘除后加减。
10、整数加、减法的运算定律同样适用于小数加减法:
11、小数加法的估算:将算式中的小数估计成它最接近的整数,然后再进行计算,例如:7.1+6.8=? 可以将7.1估计成最接近的整数7,将6.8估计成最接近的整数7,然后用7+7=14得到算式7.1+6.8大概等于14,这个结果与实际结果13.9十分接近。
二 认识三角形和四边形
1、按照不同的标准给已知图形进行分类:
(1)按平面图形和立体图形分;
(2)按平面图形是否由线段围成来分的;
(3)按图形的边数来分。
2、平行四边形具有易变性,三角形的稳定性。
3、把三角形按照不同的标准分类:
(1)按角分,分为:直角三角形、锐角三角形、钝角三角形,并了解其本质特征:三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形。
(2)按边分,分为:等腰三角形、等边三角形、任意三角形。有两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形,等边三角形每个角都是60°。
4、等腰三角形和等边三角形的关系:等边三角形是特殊的等腰三角形。
5、任意一个三角形内角和等于180度。
6、三角形任意两边之和大于第三边。补充知识点:三角形两边之差小于第三边。
7、四条线段围成的图形是四边形。
有两组对边分别平行的四边形是平行四边形;只有一组对边平行的四边形是梯形。
知道长方形、正方形是特殊的平行四边形。
正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。
三、小数乘法
1、复习:乘法算式的读法和表示的意义:
①乘法的读法:如:25×14读作:“二十五乘十四”。
②乘法的意义:如:25×14,“表示25个14的和是多少,或25的14倍是多少”。
乘法算式中各部分的名称:
读作“25乘3等于75”。
2、小数乘整数的意义:比起整数乘整数的意义,它有了进一步的扩展,小数乘整数的意义包括两种情况:
(1)同整数乘法的意义相同,即求相同加数的和的简便运算。
(2)是求一个整数的十分之几,百分之几……是多少。
3、小数点搬家(小数点移动引起小数大小变化的规律):
小数点向左移动一位,小数就缩小到原来的十分之一;小数点向左移动两位,小数就缩小到原来的百分之一……以此类推。
小数点向右移动一位,这个数就扩大到原来的10倍;小数点向右移动两位,这个数就扩大到原来100倍……以此类推。
4、积的小数位数与乘数的小数位数的关系:小数乘法中各个乘数中小数的位数和就是积的小数的位数。
5、小数乘法法则:先不看小数点,按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数乘法的计算,用的是转化的思想方法:先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积,如6.2×0.3看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积1.86。因此,小数乘法的关键是处理好小数点。在点小数点时注意:乘得的积的小数位数不够时,要在前面用0补足,如0.04×0.2=0.008,在8的前面补两个0,点上小数点后,整数部分也写一个0。
6、小数乘法的竖式格式:
前面学习小数加减法的竖式格式时,要求小数点对齐,也就是相同数位对齐,举例如下:
7、小数乘法的估算:将算式中的小数估计成它最接近的整数,然后再进行计算,例如:5.1×9.8=? 可以将5.1估计成最接近的整数5,将9.8估计成最接近的整数10,然后用5×10=50,得到算式5.1×9.8大概等于50,这个结果与实际结果49.98十分接近。
8、小数的混合运算的运算顺序与整数四则混合运算的顺序相同。整数的运算定律在小数运算中仍然适用。例如乘法的结合律,交换律,分配律等等。
9、 一个数乘以小于1的数,积小于原数;一个数乘以1等于它本身;一个数乘以大于1的数,积大于原数。
10、简便运算口诀:能简算时要简算;同级运算可“交(换律)结(合律)”;有加(减)有乘分配律。
四、观察物体
1、正确辨认从上面、前面、左面观察到物体的形状。
2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
5、从不同的位置观察,才能更全面地认识一个物体。
五、认识方程
1、用字母表示数:就是把字母当作已知数来参与计算。
(1)用字母表示运算定律和有关图形的面积公式。
例如:
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
减法的特性:a-b-c=a-(b+c)
乘法交换律:a×b=b×a
乘法结合律:a×b×c=a×(b×c)
乘法分配律:a×(b+c)=a×b+a×c
正方形周长:c=4a 正方形面积:s=a×a
长方形的周长:C=(a+b)×2 长方形面积:s=a×b
此外,还可以拓展到以前曾经学过的 路程=速度×时间 总价=单价×数量……
(2)字母表示数的时候,字母与数字相乘,字母与字母相乘,中间的乘号可以用小圆点代替或者省略。例如:a×5=5·a=5a 数字一般都写在字母的前面。
(3)区别a的平方:a2和2乘a:2a 的区别。
2、含有未知数的等式叫做方程。
3、方程与等式的关系:方程是等式但等式不一定是方程;或者说方程属于等式,等式包含方程。
4、找等量关系式:将情景中的数量之间的关系用“文字等式”表示出来,例如:正方形的周长=边长×4
5、列方程:把题目中已知数量的值代入等量关系式中,然后设未知的数量为一个字母(如x),也代入等量关系式,这样便可得到方程。
例如:已知一个正方形的周长为2.4米,求边长为多少?
解:设未知的边长为x米。
然后把周长2.4米,边长x米都代入等量关系式:正方形的周长=边长×4
得到: 4x=2.4
6、方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
7、解简单的方程时可以直接采用的公式:
加数=和-另一加数 被减数=减数+差 减数=被减数-差
乘数=积÷另一乘数 被除数=除数×商 除数=被除数÷商
8、等式的性质一:等式两边都加上或减去同一个数,等式仍然成立。
等式的性质二:等式两边都乘或除以同一个数(零除外),等式仍然成立。
简单说就是:“等号两边同时加,减,乘,除(0除外)同一个数,等式依然成立。”
9、用“等式的性质”解ax±b=c类型的方程,举例如下:
10、解ax±bx=c类型的方程,举例如下:
11、解(ax±b)c=d类型的方程,举例如下:
12、检验方程的解,就是把它带回到方程中,看等式是否成立。
13、在有多个未知数量的应用题中,通常应将1倍数设为x,举例如下:
例:爸爸的年龄是儿子年龄的4倍,父子俩年龄之和为40,求父亲和儿子的年龄各是多少岁?
解:首先根据题意找出等量关系式:爸爸年龄+儿子年龄=40
因为儿子年龄是1倍数,所以:设儿子年龄为x岁,那么爸爸年龄就是4x,代入等量关系式得:
爸爸年龄为:4x=4×8=32(岁)
答:爸爸的年龄为32岁,儿子的年龄为8岁。
数学好玩
一、密铺:图形之间没有空隙也不重叠,就是密铺。三角形和四边形都可以密铺。
二、奥运中的数学:略
三、优化:
1.沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。
2.烙饼类问题策略:在每次只能烙两张饼,两面都要烙的情况下:
①烙3张饼:先烙1,2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2,3号饼的反面。
②烙多张饼:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2个2个的烙,最后3张饼按上面的最优方法烙,最节省时间。
六 数据的表示和分析
1、条形统计图:
横向:用直条的长短表示,竖向表示类别,横向表示数量;
纵向:用直条的高矮表示,横向表示类别,竖向表示数量。
不同的统计图中1格表示的单位量是不同的,要结合具体的情况来判断1格表示几个单位。数据大,每1格所表示的单位量就多,数据小,每1格所表示的单位量就小。
条形统计图的特点:直观、方便、便于察看数量多少。
2、制作条形统计图的方法:确定水平方向,标出项目;确定垂直方向代表的数量(1格代表的数量);根据数据的大小画出长度不同的直条;写出标题。
3、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
4、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
5、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
6、平均数是一组数据平均水平的代表。平均数=总数量÷数量个数
公式变形:总数量=平均数×数量个数 数量个数=总数量÷平均数
复制打开网址 www.1ydt.com 下载完整全册word教案试卷及PPT课件点击阅读原文看全部教学内容