查看原文
其他

苏教版五年级数学下册知识点总结

班班通平台 班班通教学系统 2021-12-24
语文作文数学英语物理
化学地理生物历史育儿
音美道德与法治中学生辅导

苏教版五年级数学下册

(义务教育教科书)

一 简易方程

二 折线统计图

蒜叶的生长

三 倍数与因数

和与积的奇偶性

四 分数的意义和性质

球的反弹高度

五 分数加法和减法

六 圆 名师精讲

七 解决问题的策略

八 整理与复习

期末易错题精选

期中试题卷

电子课本教科书图片

苏教版小学数学资料汇编


扫码下载全册Word文档视频

课件下载地址

https://m.1ydt.com/v/box-11_34_44_59


第一单元:有余数的除法

知识点归纳

第一单元 方程


1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。等式>方程

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

  等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

5、求方程中未知数的过程,叫做解方程。

  解方程时常用的关系式:

  一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差

  一个因数=积÷另一个因数 除数=被除数÷商 被除数=商×除数

  注意:解完方程,要养成检验的好习惯。

6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。

第二单元 折线统计图


1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:

①写标题和统计时间;                 ②注明图例(实线和虚线表示);

③分别描点、标数;                   ④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图)


第三单元 公倍数和公因数


1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

  一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

  一个数最大的因数等于这个数最小的倍数。

2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。

3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。

4、两个素数的积一定是合数。举例:3×5=15,15是合数。

5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。

6、求最大公因数和最小公倍数的方法:

  倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5

   素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1

一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1

相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1

特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。

一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)


第四单元 认识分数


1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

2、分母越大,分数单位越小,最大的分数单位是1/2。

3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。3/7吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。

4、4米的1/5和1米的4/5同样长。

5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

7、男生人数是女生人数的4/3,则女生人数是男生人数的3/4。

8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数= 除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,写作1/13,读作一又三分之一。带分数都大于真分数,同时也都大于1。

11、把分数化成小数的方法:用分数的分子除以分母。

12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

18、一些特殊分数的值:

1/2 = 0.5 1/4 = 0.25 3/4 =0.75 1/5 =0.2 2/5 =0.4 3/5 =0.6

4/5 =0.8 1/8 =0.125 3/8 =0.375 5/8 =0.625 7/8 =0.875 1/10 =0.1

19、求一个数是(占)另一个数的几分之几,用除法列算式计算。

20、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。

21、分子和分母只有公因数1,这样的分数叫最简分数。约分时,通常要约成最简分数。

22、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

约分方法:直接除以分子、分母的最大公因数。例如:

23、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。

24、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。(2)化成小数后再比较。(3)先通分转化成同分子的分数再比较。(4)十字相乘法。

  球的反弹实验

球的反弹高度实验的结论:

(1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。

(2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。


第五单元 分数加法和减法


1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。

2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。

3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。

4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。乘法分配律也适用分数的简便计算。

6、裂项公式(用于特殊的简便计算)

密铺

1、由线段围成的图形(三角形、长方形、正方形、梯形、平行四边形)能够密铺

2、由曲线围成的图形(圆)不能够密铺。


第六单元 圆


1、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)

2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)

5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。

7、正方形里最大的圆。两者联系:边长=直径

  画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

8、长方形里最大的圆。两者联系:宽=直径

  画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

9、同一个圆内的所有线段中,圆的直径是最长的。

10、车轮滚动一周前进的路程就是车轮的周长。

  每分前进米数(速度)=车轮的周长×转数

11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

  用字母π(读pài)表示。π是一个无限不循环小数。π=3.141592653……

  我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14

12、如果用C表示圆的周长,那么C=πd或C = 2πr

13、求圆的半径或直径的方法:d = C圆÷π r= C圆÷ π÷2= C圆÷2π

14、半圆的周长等于圆周长的一半加一条直径。 C半圆= πr+2r   C半圆= πd÷2+d

15、常用的3.14的倍数:

3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84

3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96

3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5

3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34

16、圆的面积公式:S圆=πr2。圆的面积是半径平方的π倍。

17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=2(C)=πr)。即:S长方形= a × b

S圆 = πr × r= πr2

  注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2πr+2r=C圆+d

18、半圆的面积是圆面积的一半。S半圆=πr2÷2

19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,

  面积的倍数=半径的倍数2

20、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=πR2-πr2=π(R2-r2)

22、常用的平方数:112=121 122=144 132=169 142=196 152=225

162=256 172=289 182=324 192=361 202=400


第七单元 解决问题策略


1、倒推法是一种非常重要的数学思考方法,在计算、图形转换、时间推算等许多实际问题中都有应用。倒推时还用到一些反义词呢

2、要正确解决多次倒推的策略就是对题目先进行“整理”,通过“整理”过程来理清思路,再倒推回去或列方程解答。

3、对于条件出现“一半”的复杂倒推题目,通常通过画线段图帮助分析列算式来解决。

复习提纲

第一单元 简易方程


1、表示相等关系的式子叫做等式。含有未知数的等式是方程。

例:x+50=150、2x=200


2、方程一定是等式;等式不一定是方程。


3、等式的性质

① 等式两边同时加上或减去同一个数,所得结果仍然是等式。

② 等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式。


4、使方程左右两边相等的未知数的值叫做方程的解求方程中未知数的过程,叫做解方程


5、解方程

60-4X=20,

解4X=60-20

    4X=40

      X=10 

检验:把X=10代入原方程, 左边=60-4×10=20,右边=20,

左边=右边,所以X=10是原方程的解。

‚方程左边=60-4×10=20=方程右边,所以X=10是方程的解。


6、解方程时常用的关系式:

一个加数=和-另一个加数    

减数=被减数-差

被减数=减数+差 

一个因数=积÷另一个因数

除数=被除数÷商

被除数=商×除数 


7、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数


8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)


9、列方程解应用题的思路:

A、审题并弄懂题目的已知条件和所求问题,

B、理清题目的等量关系,

C、设未知数,一般是把所求的数用X表示,

D、根据等量关系列出方程,

E、解方程,

F、检验,

G、作答。

注意:解完方程,要养成检验的好习惯。



第二单元 折线统计图



1、复式折线统计图

从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:

①写标题和统计时间;

②注明图例(实线和虚线表示);

③分别描点、标数;

④实线和虚线的区分(画线用直尺)。

注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。(也可以先画虚线的统计图)


第三单元 因数和倍数


1、几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数因数与倍数是相互依存绝不能孤立的存在.


2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。(找因数的方法:成对的找。)


3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。(找一个数倍数的方法:从自然数1、2、3、……分别乘这个数)


4、一个数最大的因数等于这个数最小的倍数。


5、按照一个数因数个数的多少可以把非0自然数分成三类

①只有自己本身一个因数的1

②只有1和它本身两个因数的数叫作质数(素数)。最小的质数是2。在所有的质数中,2是唯一的一个偶数。  

③除了1和它本身两个因数还有别的因数的数叫作合数。(合数至少有 3个因数)最小的合数是4。

按照是否是2的倍数可以把自然数分成两类偶数奇数最小的偶数是0.


6、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。公因数只有1的两个数叫作互质数    


7、两个数公有的倍数,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的最小公倍数,用符号[ ,]表示。两个数的公倍数也是无限的。


8、两个素数的积一定是合数。举例:3×5=15,15是合数。


9、两个数的最小公倍数一定是它们的最大公因数的倍数。

举例:[6,8]=24,(6,8)=2,24是2的倍数。


10、求最大公因数和最小公倍数的方法:(列举法、图示法、短除法  ......)

①倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

举例:15和5,[15,5]=15,(15,5)=5

②互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

举例:[3,7]=21,(3,7)=1

③一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。 


11、质因数:如果一个数的因数是质数,这个因数就是它的质因数。

分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。


12、是2的倍数的数叫作偶数,不是2的倍数的数叫作奇数。相邻的偶数(奇数)相差2。


13、2 的倍数的特征:个位是0、2、4、6、8。

5的倍数的特征:个位是0或5。

3 的倍数的特征:各位上数字的和一定是3的倍数。


14、和与积的奇偶性:

偶数+偶数=偶数  

奇数+奇数=偶数

偶数+奇数=奇数  

偶数×偶数=偶数   

偶数×奇数=偶数

奇数×奇数=奇数


第四单元 分数的意义和性质


1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。


2、分母越大,分数单位越小,最大的分数单位是1/2


3、举例说明一个分数的意义:

3/7表示把单位“1”平均分成7份,表示这样的3份;还表示把3平均分成7份,表示这样的1份。

3/7吨表示把1吨平均分成7份,表示这样的3份;还表示把3吨平均分成7份,表示这样的1份。


4、分数与除法的关系

被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数= 被除数/除数 

如果用a表示被除数,b表示除数,可以写成a÷b=a/b(b≠0)  


5、4米的1/5和1米的4/5同样长


6、求一个数是(占)另一个数的几分之几,用除法列算式计算。

方法:是(占)前面的数除以后面的数写成分数。

男生人数是女生人数的3/4,则女生人数是男生人数的4/3。


7、分子比分母小的分数叫做真分数

分子比分母大或者分子和分母相等的分数叫做假分数


8、真分数小于1。假分数大于或等于1。真分数总是小于假分数


9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)


10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数带分数是假分数的另一种形式。

例如,4/3就可以看作是3/3(就是1)和1/3合成的数,写作1⅓,读作一又三分之一。

带分数都大于真分数,同时也都大于1。


11、把分数化成小数的方法:用分数的分子除以分母。


12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……


13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。


14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。


15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子,母为指定的分母。


16、大于3/7而小于5/7的分数有无数个;分数单位是1/7的分数只有4/7一个。


17、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。


18、分子和分母只有公因数1,这样的分数叫最简分数约分时,通常要约成最简分数。


19、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分

约分方法:直接除以分子、分母的最大公因数。


20、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。


21、比较异分母分数大小的方法

(1)先通分转化成同分母的分数再比较。

(2)化成小数后再比较。

(3)先通分转化成同分子的分数再比较。

(4)十字相乘法。



第五单元 分数加法和减法


1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。


2、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。

分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。


3、分母分子相差越大,分数就越接近0;

分子接近分母的一半,分数就接近2(1);

分子分母越接近,分数就越接近1。


4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。


5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。乘法分配律也适用分数的简便计算。


6、裂项公式(用于特殊简便计算,选学)

 

第六单元 圆


1、是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)


2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

在同一个圆里,有无数条半径和直径。

在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。


3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。


4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r,r=d÷2)


5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。


6、圆心决定圆的位置,半径决定圆的大小

所以要比较两圆的大小,就是比较两个圆的直径或半径。

扇形是由圆心角的两条半径和圆心角所对的弧围成的图形。

扇形的大小是由圆心角决定的。(半圆与直径的组合也是扇形)


7、正方形里最大的圆:

两者联系:边长=直径

画法:

(1)画出正方形的两条对角线;

(2)以对角线交点为圆心,以边长为直径画圆。


8、长方形里最大的圆:

两者联系:宽=直径

画法:

(1)画出长方形的两条对角线;

(2)以对角线交点为圆心,以边长为直径画圆。


9、同一个圆内的所有线段中,圆的直径是最长的。


10、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×转数 

 

11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母π(读pài)表示。π是一个无限不循环小数。

π=3.141592653……

我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14


12、如果用C表示圆的周长,那么C=πdC = 2πr


13、求圆的半径或直径的方法:

d=C÷π

r =C÷ π÷2= C÷2π


14、半圆的周长等于圆周长的一半加一条直径。

C半圆= πr+2r

C半圆= πd÷2+d


15、常用的3.14的倍数:

3.14×2=6.28     3.14×3=9.42

3.14×4=12.56   3.14×5=15.7

3.14×6=18.84   3.14×7=21.98

3.14×8=25.12   3.14×9=28.26  


16、圆的面积公式:S=πr²

圆的面积是半径平方的π倍。


17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=c/2=πr)。

即:S长方形= a × b

S = πr × r=πr²

注意:切拼后的长方形的周长比圆的周长多了两条半径。

C长方形=2πr+2r=C+d 


18、半圆的面积和周长。

S半圆=πr²÷2

C半圆=C/2+d


19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,

面积的倍数=半径的倍数的平方


20、周长相等的平面图形中,圆的面积最大

面积相等的平面图形中,圆的周长最短。


21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

S圆环=πR²-πr²=π(R²-r²)


22、常用的平方数:

11²=121  12²=144  13²=169  

14²=196  15²=225  16² =256

17²=289  18²=324  19²=361  

2=400


第七单元 解决问题的策略


1、运用转化的策略可以把不规则的图形转化成规则的图形,转化前后图形变化了,但大小不变。

2、计算小数的除法时,可以把小数转化成整数来计算。

3、在计算异分母分数加、减时,可以把异分母分数装化成同分母分数来计算。

4、在进行面积公式推导时,可以把图形转化成已经学过的图形面积来计算。

5、运用转化的策略,从不同的角度灵活的分析问题,可以使复杂的问题简单化。


图文来自网络,版权归原作者,如有不妥,告知即删

点击阅读原文下载全册PPT课件动画教案习题整套资料

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存