查看原文
其他

北师大版九上数学1.1 锐角三角函数 知识点精讲

全册精讲+→ 班班通教学系统 2022-04-10

 扫码查看下载

全部资源



知识点总结




常见考法


(1)利用同角三角函数的三个重要关系化简求值;


(2)利用特殊角的三角函数解决实际生活中有关距离的问题。


误区提醒


(1)运用三角函数概念及其关系式时,计算易错,名称易混淆;(2)没有明确三角形是直角三角形或认定中Rt△ABC中的∠C=90º的,从而错误地求出锐角的三角函数值;


(3)特殊角的三角函数值易混淆,也容易把一个角与其余角的三角函数值混淆。


【典型例题】在Rt△ABC中,∠C=90°,abc分别为∠A、∠B、∠C的对边,下列各式成立的是( )


A. b=a·sinB        B. a=b·cosB        C. a=b·tanB         D. b=a·tanB

【解析】由锐角三角函数的定义,知∠B的对边与邻边的比值是∠B的正切,即tanB=b/a ;b=a·tanB。



锐角三角函数定义


锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

  正弦(sin)等于对边比斜边;sinA=a/c

  余弦(cos)等于邻边比斜边;cosA=b/c

  正切(tan)等于对边比邻边;tanA=a/b

  余切(cot)等于邻边比对边;cotA=b/a

  正割(sec)等于斜边比邻边;secA=c/b

  余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

 积的关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

特殊的三角函数值

  0°30°45°60°90°

  01/2√2/2√3/21←sinA

  1√3/2√2/21/20←cosA

  0√3/31√3None←tanA

  None√31√3/30←cotA

诱导公式

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  (其中k∈Z)

二倍角的正弦、余弦和正切公式

  sin2α=2sinαcosα

  cos2α=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

  2tanα

  tan2α=—————

  1-tanα

三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sinα

  cos3α=4cosα-3cosα

  3tanα-tanα

  tan3α=——————

  1-3tanα

公式全归纳

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c

余弦(cos):邻边比斜边,即cosA=b/c

正切(tan):对边比邻边,即tanA=a/b

余切(cot):邻边比对边,即cotA=b/a

正割(sec):斜边比邻边,即secA=c/b

余割(csc):斜边比对边,即cscA=c/a

特殊角三角函数值

三角函数关系

互余角的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和差公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

三角和的公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

倍角公式

tan2A = 2tanA/(1-tan² A)

Sin2A=2SinA•CosA

Cos2A = Cos^2 A--Sin² A =2Cos² A-1 =1-2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)³;

cos3A = 4(cosA)³ -3cosA

tan3a = tan a • tan(π/3+a)• tan(π/3-a)

半角公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

积化和差公式

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

万能公式

sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

三角形面积定理

三角函数的图象性质

锐角三角函数知识点解析

一、锐角三角函数的定义



二、特殊角的三角函数值:




三、锐角三角函数值的变化:



四、互余两角之间的三角函数关系:



五、同角之间的三角函数的关系




六. 基础题型分析:








习题解析

如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为 

   cm的圆形纸片所覆盖.

解析:



试题分析:


作圆O的直径CD,连接BD,根据圆周角定理求出∠D=60°,根据锐角三角函数的定义得出

代入求出CD即可.


试题解析:

作圆O的直径CD,连接BD,
∵弧BC对的圆周角有∠A、∠D,
∴∠D=∠A=60°,
∵直径CD,
∴∠DBC=90°,


已知在Rt△ABC中,∠C=90°,则a3cosA+b3cosB等于(  )

解析:


B

试题分析:

根据锐角三角形函数的定义表示出cosA和cosB,然后利用勾股定理列式整理即可得解.

由勾股定理得,

原式=

故选B.


在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是

解析:



试题分析:


C在以A为圆心,以2为半径的圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,根据勾股定理求出此时的OC,求出∠BOC=∠CAO,根据解直角三角形求出此时的值,根据tan∠BOC的增减性,即可求出答案.


试题解析:


C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,


AC=2,OA=3,由勾股定理得:∵∠BOA=∠ACO=90°,
∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,
∴∠BOC=∠OAC,随着C的移动,∠BOC越来越大,
∵C在第一象限,
∴C不到x轴点,
即∠BOC<90°

故答案为:



图文来自网络,版权归原作者,如有不妥,告知即删

点击阅读原文下载全册PPT课件动画教案习题整套资料

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存