北师大版九上数学1.1 锐角三角函数 知识点精讲
扫码查看下载 全部资源 |
知识点总结
常见考法
(1)利用同角三角函数的三个重要关系化简求值;
(2)利用特殊角的三角函数解决实际生活中有关距离的问题。
误区提醒
(1)运用三角函数概念及其关系式时,计算易错,名称易混淆;(2)没有明确三角形是直角三角形或认定中Rt△ABC中的∠C=90º的,从而错误地求出锐角的三角函数值;
(3)特殊角的三角函数值易混淆,也容易把一个角与其余角的三角函数值混淆。
【典型例题】在Rt△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是( )
A. b=a·sinB B. a=b·cosB C. a=b·tanB D. b=a·tanB
【解析】由锐角三角函数的定义,知∠B的对边与邻边的比值是∠B的正切,即tanB=b/a ;b=a·tanB。
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
特殊的三角函数值
0°30°45°60°90°
01/2√2/2√3/21←sinA
1√3/2√2/21/20←cosA
0√3/31√3None←tanA
None√31√3/30←cotA
诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
2tanα
tan2α=—————
1-tanα
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sinα
cos3α=4cosα-3cosα
3tanα-tanα
tan3α=——————
1-3tanα
公式全归纳
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c
余弦(cos):邻边比斜边,即cosA=b/c
正切(tan):对边比邻边,即tanA=a/b
余切(cot):邻边比对边,即cotA=b/a
正割(sec):斜边比邻边,即secA=c/b
余割(csc):斜边比对边,即cscA=c/a
二
特殊角三角函数值
三
三角函数关系
互余角的关系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方关系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
四
锐角三角函数公式
两角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan² A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin² A =2Cos² A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)³;
cos3A = 4(cosA)³ -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
半角公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
积化和差公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
五
三角形面积定理
六
三角函数的图象性质
锐角三角函数知识点解析
一、锐角三角函数的定义
二、特殊角的三角函数值:
三、锐角三角函数值的变化:
四、互余两角之间的三角函数关系:
五、同角之间的三角函数的关系
六. 基础题型分析:
习题解析
如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为
cm的圆形纸片所覆盖.
解析:
试题分析:
作圆O的直径CD,连接BD,根据圆周角定理求出∠D=60°,根据锐角三角函数的定义得出
代入求出CD即可.
试题解析:
作圆O的直径CD,连接BD,
∵弧BC对的圆周角有∠A、∠D,
∴∠D=∠A=60°,
∵直径CD,
∴∠DBC=90°,
已知在Rt△ABC中,∠C=90°,则a3cosA+b3cosB等于( )
解析:
B
试题分析:根据锐角三角形函数的定义表示出cosA和cosB,然后利用勾股定理列式整理即可得解.
由勾股定理得,
原式=
故选B.
在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是
解析:
试题分析:
C在以A为圆心,以2为半径的圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,根据勾股定理求出此时的OC,求出∠BOC=∠CAO,根据解直角三角形求出此时的值,根据tan∠BOC的增减性,即可求出答案.
试题解析:
C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,
AC=2,OA=3,由勾股定理得:
∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,
∴∠BOC=∠OAC,
∵C在第一象限,
∴C不到x轴点,
即∠BOC<90°
故答案为:
图文来自网络,版权归原作者,如有不妥,告知即删