查看原文
其他

高中数学《2 数学建模的主要步骤》微课精讲+知识点+教案课件+习题

语文

数学

英语

物理

化学

生物

史地

政治

道德与法治

美术

音乐

科学全部课程 ↓

知识点:

一.模型准备   先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备。

二.模型假设   有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。

三.模型构成    在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等)

四.模型解析   在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

五.模型检验与应用  把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为.


视频教学:


课件:


导学案:

数学建模的基本方法

一般说来数学建模的方法大体上可分为机理分析和测试分析两种。

  面对于一个实际问题用哪一种方法建模,主要取决于人们对研究对象的了解程度和建模目的。如果掌握了一些内部机理的知识,模型也要求具有反映内部特征的物理意义,建模就应以机理分析为主。而如果对象的内部机理规律基本上不清楚,模型也不需要反映内部特征,那么可以用测试分析。对于许多实际问题也常常将两种方法结合起来,用机理分析建立模型结构,用测试分析确定模型的参数。

  数学建模的一般步骤

建模要经过哪些步骤并没有一定的模式,通常与问题性质和建模的目的等有关。下面给出建模的一般步骤,如图1.2所示。

  模型准备:了解实际背景,明确建模目的,搜索必要信息,弄清对象的主要特征,形成一个比较清晰的“问题”(即问题的提出)。情况明才能方法对,在这个阶段要深入调查研究,虚心向实际工作者请教,尽量掌握第一手资料。

  模型假设:根据对象的特征和建模目的,抓住问题的本质,忽略次要因素,作出必要的、合理的简化假设。对于建模的成败这是非常重要和困难的一步。假设不合理或太简单,会导致错误的或无用的模型;假设作得过分详细,试图把复杂对象的众多因素都考虑进去,会使你很难或无法继续下一步的工作。常常需要在合理与简化之间作出恰当的折衷,要不段积累经验,并注意培养和充分发挥对事物的洞察力和判断力。

  模型的建立:根据假设,用数学的语言、符号描述对象的内在规律,得到一个数学结构。这里除了需要一些相关的专门知识外,还常常需要较为广阔的应用数学方面的知识,要善于发挥想象力,注意使用类比法,分析对象与熟悉的其他对象的共性,借用已有的数学模型。建模时还应遵循的一个原则是尽量采用简单数学工具,因为你的模型总希望更多的人了解和使用,而不是只供少数专家欣赏。

  模型求解:使用各种数学方法、数学软件和计算机技术对模型求解。

  模型分析:对求解结果进行数学上的分析,如对结果进行误差分析,分析模型对数据的稳定性或灵敏性等。

  模型检验:把求解和分析结果翻译回到实际问题,与实际现象、数据进行比较,检验模型的合理性与适用性。如果结果与实际不符,问题常常出现在模型假设上,应该修改或补充假设,重新建模。这一步对于模型是否真的有用是非常关键的,要以严肃认真的态度对待。

  模型应用:这与问题的性质、建模的目的以及最终结果有关,一般不属于本书讨论的范围。

    应该指出,并不是所有问题的建模都要经过这些步骤,有时各步骤之间的界限也不那么分明,建模时不要拘泥于形式上的按部就班。

  数学建模的全过程

    数学建模的全过程可分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象的循环,如图1.3所示。

 表述是根据建模目的和信息将实际问题“翻译”成数学问题,即将现实问题“翻译”成抽象的数学问题,属于归纳法。数学模型的求解选择适当的数学方法求得数学模型的解答,则属于演绎法。解释是将数学语言表述的数学模型的解答“翻译”回实际对象,给出分析、预报、决策或者控制的结果。最后,作为这个过程的最重要一环——检验,是用现实对象的信息检验得到的解答。

图1.2也揭示了现实对象与数学模型的关系。一方面,数学模型是将现象加以归纳、抽象的产物,它来源于现实,又高于现实。另一方面,只有当数学建模的结果经受住现实对象的检验时,才可以用来指导实际,完成实践——理论——实践这一循环。

数学建模能力的培养

建模可以看成一门艺术。艺术在某种意义下是无法归纳出几条准则或方法的。要进行数学建模,建模能力的培养是非常重要的,对于能力的培养不应该有统一的模式和方法。这里我们提出以下几点建模对学生能力的培养:

1、数学知识的积累。由于各门数学知识在数学建模过程中都可能用到,所以掌握数学知识自然越多越好。但掌握的数学知识不多,也可以进行数学建模。有很多数学模型是仅用初等数学理论建立的,而且我们提倡尽量用较简单的数学知识建模。在能达到建模目的的前提下,模型越简单越好。

2、学好数学模型课,多看数学建模案例自然是不可少的

3、留心各样的事物,培养自己随时随地主动站在数学的角度看问题,特别要将自己始终置身于数学世界之中,用数学的思想审视一切。

4、数学建模过程是创造性思维的过程,需要丰富的想象力和敏锐、深刻的洞察力。所谓想象力就是能对不同现象通过联想找出它们的联系和共同点而加以类比。所谓洞察力就是针对某一现象时,能很快地抓住现象的本质。分清层次,抓住其主要方面,并对解决问题的方法做出选择。

5、兴趣是学习的动力,要努力培养自己对数学建模浓厚的兴趣。数学建模是一门实践性极强的课程,所以,在实践中学习数学建模是最好的学习方法。

6、由于数学建模与计算机联系非常紧密。所以在实践中学习数学建模是最好的学习方法。

7、培养自己向别人学习的习惯和协同作战的团队精神。

   想象力的应用:想象力是我们人类持有的一种思维能力。是我们原有知识的基础上,将新感知的形象与记忆中的形象互相比较、重新组合,加工处理,创造新形象的能力。

   例1 某人平时下班总在固定时间到达某处,然后由他的妻子开车接他回家。有一天,他比平时提早了30分钟到达该处。于是此人就沿着妻子来接他的方向步行回去,并在途中遇到了妻子。这一天他比平时提前10分钟回到家。问此人总共步行了多长时间?

   解:这是一个测试想象能力的简单题目。根本不必作太多的计算。粗粗一看,似乎会感到条件不够,无法解答。但你只要换一种想法,问题就会迎刃而解。

   假如他的妻子遇到他以后在这他仍旧开往会合地点,那么他就不会提前回家了。提前到十分钟时间从何而来?显然是由于节省了他妻子接他的时间,他妻子少开了十分钟的车。因为他妻子开车是往返走的路程相同,那么在遇到他后往返路程中各节省5分钟。他提前30分钟开始走,那则此人在遇到他妻子时他步行了25分钟。由图一可清晰得出结果,

例2 学校组织乒乓球比赛,共有100名学生报名参加,比赛规则为淘汰制,最后产生出一名冠军。问:最后产生冠军,总共需要举行多少场比赛?

 解:第一轮进行50场比赛,剩下50名学生。

     第二轮进行25场比赛,剩下25名学生。

第三轮进行12场比赛,1位同学进入下一轮,剩下13名学生。

第四轮进行6场比赛,1位同学进入下一轮,剩下7名学生。

第五轮进行3场比赛,1位同学进入下一轮,剩下4名学生。

     第六轮进行2场比赛,剩下2名学生。

     第七轮进行1场比赛,剩下1名冠军。

   一共需要比99场

   这是常规方法,事实上,我们也可以换一种方法来思考这一问题。由于淘汰赛的特殊性,进行一场淘汰一人。反过来,淘汰一人也必须举行一场比赛。这就是我们数学中的一一对应关系。现在我们要在100名学生中产生一位冠军,众所周知要淘汰99名学生才能产生冠军。因此比赛总场此应为99场。

教案:

数学建模的主要步骤:

 

第一、 模型准备

  首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

 

第二、 模型假设

  根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

 

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

 

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

 

尽量使问题线性化、均匀化。

 

第三、 模型构成

  根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

 

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

 

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

 

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

 

第四、模型求解

  可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

 

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

 

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

 

第五、模型分析

  对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

 

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

 

分析,数据稳定性分析。

 

数学建模采用的主要方法有:

 

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

 

型。

1、比例分析法:建立变量之间函数关系的最基本最常用的方法。

2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。

3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。

5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

 

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

 

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

 

于处理的是静态的独立数据,故称为数理统计方法。

2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

 

于处理的是静态的独立数据,故称为数理统计方法。

4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

 

(三)、仿真和其他方法

1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

 

态变量。②连续系统仿真,有解析表达式或系统结构图。

2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构

 

3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

 

可能变化,人为地组成一个系统。



高中生学习推荐:
高中语文(微课+课件+教案+考点)汇总
高中英语(微课+课件+教案+考点)汇总
高中化学(微课+课件+教案+考点)汇总
高中物理(微课+课件+教案+考点)汇总
高中数学(微课+课件+教案+练习题)汇总
高中生物(微课+课件+教案+练习题)汇总
高中历史(必修+选修)微课精讲+考点汇总
高中政治(必修+选修)微课精讲+考点汇总

高中地理(必修+选修)微课精讲+考点汇总


图文来自网络,版权归原作者,如有不妥,告知即删

点击阅读原文下载全册PPT课件动画教案习题整套资料

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存