初中数学《9.3 平行四边形》微课精讲+知识点+教案课件+习题
科学 | 全部课程 ↓ |
知识点:
视频教学:
练习:
1、已知平行四边形ABCD的周长为30cm,AB:BC=2:3,则AB的长为( )
A.6cm B.9cm C.12cm D.18cm
2、如图,在平行四边形ABCD中,下列结论中错误的是( )
A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC=BC
3、在四边形ABCD中:①AB∥CD;②AD∥BC;③AB=CD;④AD=BC.从以上选择两个条件使四边形ABCD为平行四边形的选法共有( )
A.3种 B.4种 C.5种 D.6种
4、下列说法错误的是( )
A.对角线互相平分的四边形是平行四边形
B.两组对边分别相等的四边形是平行四边形
C.一组对边平行且相等的四边形是平行四边形
D.一组对边相等,另一组对边平行的四边形是平行四边形
5、已知:如图,在▱ABCD中,对角线AC,BD相交于O,E,F是对角线AC上的两点,给出下列四个条件:①OE=OF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF. 其中不能判定四边形DEBF是平行四边形的有( )
A.0个 B.1个 C.2个 D.3个
课件:
教案:
【要点梳理】 | |||||||||
一.中心对称图形 二.平行四边形 | |||||||||
【例题讲解】及【举一反三】 | |||||||||
一.图形的旋转 要点一、旋转的概念 将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.
要点诠释:旋转的三要素:旋转中心、旋转方向和旋转角度; 图形的旋转不改变图形的形状、大小. 要点二、旋转的性质 一个图形和它经过旋转所得到的图形中: (1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 要点三、旋转的作图 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. 要点诠释: 作图的步骤: (1)连接图形中的每一个关键点与旋转中心; (2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角); 例: 1. 如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( ) 2.如图,画出
二.中心对称图形 要点一、中心对称和中心对称图形 1.中心对称: 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心. 要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同; (2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) . 2.中心对称图形: 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心. 要点诠释:(1)中心对称图形指的是一个图形; (2)线段,平行四边形,圆等等都是中心对称图形. 3.中心对称与中心对称图形的区别与联系:
要点二、关于原点对称的点的坐标特征 关于原点对称的两个点的横、纵坐标均互为相反数.即点 要点三、中心对称、轴对称、旋转对称 1.中心对称图形与旋转对称图形的比较: 2.中心对称图形与轴对称图形比较: 要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提. 例: 1.如图,△ABC与△A1B1C1关于点O成中心对称,下列说法: ①∠BAC=∠B1A1C1;②AC=A1C1; ③OA=OA1; ④△ABC与△A1B1C1的面积相等,其中正确的有( ) A.1个 B.2个 C.3个 D.4个 2.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是( ) 3. 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3). (1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标; (2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标; (3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标. 三.平行四边形 要点一、平行四边形的定义 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ 要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条. 要点二、平行四边形的性质 1.边的性质:平行四边形两组对边平行且相等; 2.角的性质:平行四边形邻角互补,对角相等; 3.对角线性质:平行四边形的对角线互相平分; 4.平行四边形是中心对称图形,对角线的交点为对称中心. 要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系. (2)由于平行四边形的性质内容较多,在使用时根据需要进行选择. (3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决. 要点三、平行四边形的判定 1.两组对边分别平行的四边形是平行四边形; 2.两组对边分别相等的四边形是平行四边形; 3.一组对边平行且相等的四边形是平行四边形; 4.两组对角分别相等的四边形是平行四边形; 5.对角线互相平分的四边形是平行四边形. 要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法. (2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 要点四、平行线间的距离 1.两条平行线间的距离: (1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等 任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积: 平行四边形的面积=底×高;等底等高的平行四边形面积相等. 例: 类型一、平行四边形的性质 1、如图,在▱ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌EAD; (2)若AE平分∠DAB,∠EAC=20°,求∠AED的度数. 举一反三: 【变式】如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明. 2、如图,平行四边形ABCD的周长为60 【变式】如图,平行四边形ABCD中,点E是DC边上一点,连接AE、BE,已知AE是∠DAB的平分线,BE是∠CBA的平分线. (1)求证:AE⊥BE; (2)若AE=3,BE=2,求平行四边形ABCD的面积. 类型二、平行四边形的判定 1、如图,在▱ABCD中,∠BAD和∠DCB的平分线AE、CF分别交BC、AD于点E、F,点M、N分别为AE、CF的中点,连接FM、EN,试判断FM和EN的数量关系和位置关系,并加以证明. 举一反三: 【变式】如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形. 3、如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF. 求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形. 4、如图所示, 求证:AC与EF互相平分. 【变式】以锐角△ABC的边AC、BC向形外作等边△ACD、等边△BCE,作等边△ABF,连接DF、CE如图所示.求证:四边形DCEF是平行四边形. 类型三、平行四边形与面积有关的计算 1、如图所示,在 举一反三: 【变式】如图,已知 求该平行四边形的面积. 2、在等边三角形ABC中,P为ΔABC内一点,PD∥AB,PE∥BC,PF//AC,D,E,F分别在AC,AB和BC上,试说明:PD+PF+PE=BA. |
初中生学习推荐:
图文来自网络,版权归原作者,如有不妥,告知即删