查看原文
其他

初中数学《11.1 反比例函数》微课精讲+知识点+教案课件+习题

全册精讲+→ 班班通教学系统 2023-02-12

语文

数学

英语

物理

化学

生物

史地

政治

道德与法治

美术

音乐

科学全部课程 ↓

知识点:

1.定义:一般地,形如为常数,k不为零)的函数称为反比例函

数。还可以写成


2.反比例函数解析式的特征

⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数

(也叫做比例系数),分母中含有自变量,且指数为-1.

⑵比例系数k不为零

⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。


视频教学:


练习:

1.下列函数中,y是x的反比例函数的是(  )

A.y=3x      B.      C.      D.


2.若函数y=(m﹣1)是反比例函数,则m的值是(  )

A.±1      B.﹣1      C.0      D.1


3.下列问题情景中的两个变量成反比例的是(  )

A.汽车沿一条公路从A地驶往B地所需的时间t与平均速度v

B.圆的周长l与圆的半径r

C.圆的面积s与圆的半径r

D.在电阻不变的情况下,电流强度I与电压U


4.下列函数:y=y=y=﹣y=2x﹣1中,是反比例函数的有(  )

A.1个      B.2个      C.3个      D.4个


5.下列关系式中:y=2x;y=﹣y=5x+1;y=x2﹣1;y=xy=11,y是x的反比例函数的共有(  )

A.4个      B.3个      C.2个      D.1个


6.若是反比例函数,则a的取值为(  )

A.1      B.﹣1      C.±l      D.任意实数

课件:


教案:

教学目标:

知识与技能:

1.理解并掌握反比例函数的概念,根据实际问题能列出反比例函数关系式;

2.能判断一个给定的函数是否为反比例函数。

过程与方法:

通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。

情感、态度与价值观:

经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。

教学重点、难点设计:

    对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。

教学准备与方法设计:

    通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。

学生知识状况分析

 由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.

教学过程

一:创设问题情境,引入新课

活动目的给学生设置疑问,激发学生学习兴趣。

活动过程

我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如为vt=1200,则t=中,t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.

二:新课讲解

活动目的在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型。

活动过程

1引入我们今天要学习的是反比例函数,

2探究归纳

经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. 复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

问题1 从A地到B地的路程为1200 km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式

从这个关系式中发现:

1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.

2.自变量v的取值是v0

问题2学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(),求另一边的长y()x的函数关系式.

分析 根据矩形面积可知

      xy24

     

从这个关系中发现:

1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;

2.自变量的取值是x0

上述个函数都具有的形式,一般地,形如(k是常数,k0)的函数叫做反比例函数

说明 1.反比例函数与正比例函数定义相比较,本质上,正比例ykx,即k是常数,且k0;反比例函数,则xykk是常数,且k0.可利用定义判断两个量xy满足哪一种比例关系.

2.反比例函数的解析式又可以写成:k是常数,k0)

3.要求出反比例函数的解析式,只要求出k即可.

三.互动平台

(1)每人写三个反比例函数,请同桌指出其中k的值.

(2)小组讨论:举出实际生活学习中具有反比例关系的例子。


做一做   多媒体课件演示

1 下列函数关系中,哪些是反比例函数?

(1)                        (2) 

(3)                        (4) 

(5)                      (6) 


2、 写出下列函数关系式,并指出它们是什么函数?

(1)三角形的面积S是常数时,它的底边长y和这条底上的高x的函数关系;

(2)食堂存煤15,可使用的天数t和平均每天的用煤

Q(千克)的函数关系.

(3).某厂现在年产值是150万元,计划今后每年增加10万元,请写出年产值y(万元)与年数x之间的关系.


、交流反思  

1.本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如(k是常数,k0)的函数叫做反比例函数

2.反比例函数的几种常见形式

形式1:(k为常数,k≠0)

形式2:(k为常数,k≠0)

形式3:(k为常数,k≠0)

六、拓展延伸

多媒体课件演示


教案主要创新点自评

    本节教案旨在实行启发式教学,主要以学生的自主探究为主,教师以问题的形式形成主导作用。重视基础知识与基本技能、过程与方法、情感态度和价值观等课程目标的全面落实,注重数学思想方法的渗透。


初中生学习推荐:

初中语文(微课+课件+教案+练习题)资料汇总

初中数学(微课+课件+教案+练习题)资料汇总

初中化学九年级全册微课+课件教案汇总试卷下载

初中道德与法治微课精讲+课件教案试卷汇总下载

初中生物(微课+课件+教案+练习试卷)资料汇总

初中历史、地理微课精讲+预习课件教案资料汇总

初中物理全册微课精讲+课件教案试卷知识点汇总

初中全科资料汇总(含教材、微课、知识点、试卷)


图文来自网络,版权归原作者,如有不妥,告知即删

点击阅读原文下载全册PPT课件教案习题整套资料

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存