本刊推荐 | 《电化学》厦门大学百年校庆专辑(上)文章介绍
点击“蓝字”
关注我们
庄志华, 陈卫. 原子数精确的金属纳米团簇在电催化领域的应用研究进展[J]. 电化学, 2021, 27(2): 125-143.
Zhi-Hua Zhuang, Wei Chen. Application of Atomically Precise Metal Nanoclusters in Electrocatalysis[J]. Journal of Electrochemistry, 2021, 27(2): 125-143.
DOI: 10.13208/j.electrochem.201246
金属纳米团簇(M NCs)是由几个到数百个金属原子组成,其尺寸一般小于2 nm。金属纳米团簇在许多催化反应中表现出高的催化活性和选择性,这与金属纳米团簇具有高的比表面积、较多暴露的活性原子,以及与金属纳米粒子(M NPs)不同的电子结构有关。金属纳米团簇确定的组成和结构使其成为一种新型模型催化剂,对纳米团簇的催化性能研究有利于人们深入理解催化剂结构-性质之间的关系,更利于催化剂的理性设计与发展。结合近几年国内外和本课题组在金属纳米团簇电催化领域的研究进展和现状,本文对该领域的代表性工作进行了简要综述,并对其未来在电催化领域的应用前景和需要解决的关键问题进行了展望。
吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学, 2021, 27(2): 144-156.
Zhi-Peng Wu, Chuan-Jian Zhong. Pd-Based Electrocatalysts for Oxygen Reduction and Ethanol Oxidation Reactions: Some Recent Insights into Structures and Mechanisms[J]. Journal of Electrochemistry, 2021, 27(2): 144-156.
DOI: 10.13208/j.electrochem.201241
The development of efficient electrocatalysts for applications in fuel cells, including proton-exchange membrane fuel cell (PEMFC) and direct ethanol fuel cell (DEFC), has attracted extensive research attention in recent years. Oxygen reduction reaction and ethanol oxidation reaction are two of the key reactions where the design of active, stable and low-cost electrocatalysts is critical for the mass commercializations of PEMFCs and DEFCs. This challenge stems largely from the limited understanding of the catalyst structures and reaction mechanisms. Progress has been made in investigations of electrocatalysts derived from Pd-based alloy nanomaterials both experimentally and computationally. We highlight herein some of the recent insights into the catalyst structures and reaction mechanisms of Pd and Pd-based electrocatalysts in oxygen reduction reaction and ethanol oxidation reaction. Both experimental and computational aspects will be discussed, along with their implications for the design of optimal electrocatalysts.
秦祥, 李仲秋, 潘建斌, 李剑, 王康, 夏兴华. 双极纳米电极阵列实现单个铂纳米颗粒上氢气析出反应的电致化学发光成像[J]. 电化学, 2021, 27(2): 157-167.
Xiang Qin, Zhong-Qiu Li, Jian-Bin Pan, Jian Li, Kang Wang, Xing-Hua Xia. Electrochemiluminescence Imaging Hydrogen Evolution Reaction on Single Platinum Nanoparticles Using a Bipolar Nanoelectrode Array[J]. Journal of Electrochemistry, 2021, 27(2): 157-167.
DOI: 10.13208/j.electrochem.201251
A high-density (5.7 × 108 cm-2) nanoelectrode array with the electrode diameter of 200 nm and the interelectrode distance of 450 nm were fabricated. The nanoelectrode array consisted of gold nanowires embedded in a porous anodic aluminum oxide (AAO) matrix, having regular nanoelectrode distribution and highly uniform nanoelectrode size. The gold nanoelectrode array was used as a closed bipolar nanoelectrode array combined with electrochemiluminescence (ECL) method to map the electrocatalytic activity of platinum nanoparticles toward hydrogen evolution reaction (HER) by modifying the catalysts on single nanoelectrodes. Results show that HER on single bipolar nanoelectrodes could be imaged with the sub-micrometer spatial resolution. The present approach offers a platform to image local electrochemical activity of electrocatalytic materials, energy materials and cellular processes with high spatial resolution.
Tesfaye Hailemariam Barkae, Mohamed Ibrahim Halawa, Tadesse Haile Fereja, Shimeles Addisu Kitte, 马显贵, 陈业权, 徐国宝. 鲁米诺/氨基磺酸电化学发光及其多巴胺检测应用[J]. 电化学, 2021, 27(2): 168-176.
Tesfaye Hailemariam Barkae, Mohamed Ibrahim Halawa, Tadesse Haile Fereja, Shimeles Addisu Kitte, Xian-Gui Ma, Ye-Quan Chen, Guo-Bao Xu. Luminol/Sulfamic Acid Electrochemiluminescence and Its Application for Dopamine Detection[J]. Journal of Electrochemistry, 2021, 27(2): 168-176.
DOI: 10.13208/j.electrochem.201247
Herein, sulfamic acid (SA) was utilized, for the first time, to enhance significantly the luminol electrochemiluminescence (ECL). With the SA concentration increased from 0.1 μmol·L-1 to 500 μmol·L-1 the ECL intensity increased proportionally. The developed luminol/SA ECL system was employed to detect dopamine (DA) based on its prominent quenching effect. The Stern-Volmer equation of Io/I= 1+Ksv[DA] could be applied to express well the quenching mechanism of DA in the luminol/SA ECL system. The calibration plot showed that the increase in the DA concentration from 0.5 to 20 μmol·L-1 decreased linearly the ECL intensity with a detection limit of 30 nmol·L-1. The luminol/SA ECL system was successfully carried out for DA detection in urine real sample by employing the standard addition method with the excellent recoveries of 103% ~ 105%. Selectivity of the as-developed ECL system was also investigated by using uric acid, ascorbic acid, sugars and amino acids. The results indicated that the ECL intensities changed negligibly in the presence of other substances.
梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能[J]. 电化学, 2021, 27(2): 177-184.
Zhen-Lang Liang, Yao Yang, Hao Li, Li-Ying Liu, Zhi-Cong Shi. Lithium Storage Performance of Hard Carbons Anode Materials Prepared by Different Precursors[J]. Journal of Electrochemistry, 2021, 27(2): 177-184.
DOI: 10.13208/j.electrochem.201242
以聚丙烯腈、石油沥青和花生壳为前驱体,在1200℃下碳化制备三种不同的硬碳材料。通过扫描电子显微、X射线衍射、氮气吸附/脱附测试和拉曼光谱等方法探究不同前驱体所制备的硬碳材料的表面形貌和物相结构。通过恒流充放电测试考察了这三种硬碳负极材料的电化学性能。结果表明,花生壳基硬碳的初始放电比容量最高,但首圈库仑效率最低,石油沥青基硬碳的首圈库仑效率最高但是比容量最低,聚丙烯腈基硬碳具有较高的循环比容量和稳定性。
秦雪苹, 朱尚乾, 张露露, 孙书会, 邵敏华. 酸性和碱性溶液中金属氮碳材料氧还原和氢析出反应的理论研究[J]. 电化学, 2021, 27(2): 185-194.
Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao. Theoretical Studies of Metal-N-C for Oxygen Reduction and Hydrogen Evolution Reactions in Acid and Alkaline Solutions[J]. Journal of Electrochemistry, 2021, 27(2): 185-194.
DOI: 10.13208/j.electrochem.201248
Single atom catalysts (SAC) have been regarded as the promising alternatives to platinum group metals due to their low costs and potentially high catalytic activities in various electrocatalytic reactions. The atomic mechanism understanding of activity discrepancy among different metal and nitrogen co-doped carbon-based catalysts is still lacking. Here, non-precious metal and nitrogen co-doped carbons (Me-N-C, Me = Fe and Co) as the model catalysts are investigated by combining experimental and theoretical studies to explore the catalytic activities and corresponding reaction mechanisms toward oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at universal pHs. Atomic theoretical simulations suggest that Fe-N-C has higher ORR activity than Co-N-C due to its lower reaction barrier of the rate-determining step, while the activity trend is reversed for HER. Our simulation results are consistent with experimental observations.
侯旭, 何欣, 李劼. “Water-in-salt”聚合物电解质制备及其电化学性能研究[J]. 电化学, 2021, 27(2): 202-207.
Xu Hou, Xin He, Jie Li. Preparation and Characterization of “Water-in-Salt” Polymer Electrolyte for Lithium-Ion Batteries[J]. Journal of Electrochemistry, 2021, 27(2): 202-207.
DOI: 10.13208/j.electrochem.201250
为提高柔性锂离子电池安全性和循环稳定性能,本实验以自由基聚合结合冷冻干燥得到的聚丙烯酰胺膜为电解质载体,引入21 mol·kg-1 LiTFSI 高浓度电解液,得到“water-in-salt”聚合物电解质。通过聚合物膜的形貌和孔道结构表征,红外光谱分析,离子电导率及电化学稳定窗口测试等对其基本物化特性进行了研究。冷冻干燥得到的聚丙烯酰胺膜内部具有大量微孔结构,有利于电解液的载入。将该吸附了电解液的聚合物电解质膜与锰酸锂(LiMn2O4)正极和磷酸钛锂(LiTi2(PO4)3)负极组装全电池进行充放电性能测试。结果表明,制得的柔性聚合物电解质具有良好的拉伸性能,高离子电导率(20°C,4.34 mS·cm-1)和宽电化学稳定窗口(3.12 V)。以“water-in-salt”聚合物电解质为隔膜组装的LiMn2O4||LiTi2(PO4)3 全电池表现出优异的倍率性能和长循环稳定性。
王伟国, 白天, 薛高飞, 叶美丹. CsPbIBr2钙钛矿太阳能电池中通过氧气诱导Spiro-OMeTAD快速氧化[J]. 电化学, 2021, 27(2): 216-226.
Wei-Guo Wang, Tian Bai, Gao-Fei Xue, Mei-Dan Ye. Oxygen-Exposure Induced Rapid Oxidation of Spiro-OMeTAD in CsPbIBr2 Perovskite Solar Cells[J]. Journal of Electrochemistry, 2021, 27(2): 216-226.
DOI: 10.13208/j.electrochem.201249
2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (Spiro-OMeTAD) is the most widely used hole transport material in perovskite solar cells (PSCs). However, its oxidation in the air takes a long time and results in the attack of perovskite by water. In this regard, we performed the oxidation process of Spiro-OMeTAD in oxygen, where perovskite can be protected from water, guaranteeing the integrity of perovskite. It was demonstrated that the champion Spiro-OMeTAD based CsPbIBr2 PSCs after oxygen oxidation achieved a 7.19% power conversion efficiency (PCE), showing a higher PCE than 6.29% of the champion device oxidized in air. A series of electrochemical characterization methods were applied to investigate the performances of the different cell devices under different oxidation conditions. It was revealed that the oxygen oxidation enabled to enhance the hole conductivity of Spiro-OMeTAD, reduce the charge recombination and improve the charge transfer efficiency in PSCs. Moreover, the device with oxygen oxidation had a higher average efficiency and greater stability. This method makes the devices have better repeatability, which provides a reliable idea for the commercial development of PSCs.
苏俊青, 周一帆, 童凌, 王亚浩, 郑菊芳, 陈竞哲, 周小顺. 电化学门控调节具有平行路径的单分子电路中电子传输[J]. 电化学, 2021, 27(2): 195-201.
Jun-Qing Su, Yi-Fan Zhou, Ling Tong, Ya-Hao Wang, Ju-Fang Zheng, Jing-Zhe Chen, Xiao-Shun Zhou. Electrochemical Gating Single-Molecule Circuits with Parallel Paths[J]. Journal of Electrochemistry, 2021, 27(2): 195-201.
DOI: 10.13208/j.electrochem.201243
Electrochemical gating has emerged as a feasible and powerful method to tune single-molecule conductance. Herein, we demonstrate that the electron transport through single-molecule circuits with two benzene rings in parallel could be efficiently gated by electrochemistry. The molecular junctions with two parallel paths are fabricated with Au electrodes by STM break junction (STM-BJ) technique. Their conductance value exhibits a 2.82-fold enhancement by the constructive quantum interference compared to single-molecule junctions with single path for electron tunneling. Furthermore, the conductance of para-benzene based molecule could be electrochemically tuned with a modulation ratio of about 333%·V-1. With the help of DFT calculations, a V-shape spectra of energy-dependent transmission coefficients T(E) around E = EF leads to the conductance gating behavior. The current work sheds a light on the electrochemical gating of single-molecule circuits with parallel paths, and offers a new way to design molecular materials for a high-performance molecular device.
吴丽文, 王玮, 黄逸凡. 应用镍超微电极的电化学表面增强拉曼光谱技术研究[J]. 电化学, 2021, 27(2): 208-215.
Li-Wen Wu, Wei Wang, Yi-Fan Huang. Electrochemical Surface-Enhanced Raman Spectroscopic Studies on Nickel Ultramicroelectrode[J]. Journal of Electrochemistry, 2021, 27(2): 208-215.
DOI: 10.13208/j.electrochem.201245
镍(Ni)电极在电化学中应用广泛。原位表征Ni电极表面的吸附物种有益于帮助理解电极反应历程、指导发展高效电催化剂。应用超微电极作为工作电极的电化学表面增强拉曼光谱技术结合了超微电极表面的传质特性和分子水平的高灵敏度表征,是研究Ni电化学的有力手段。本文所述的研究工作通过在金(Au)超微电极表面电吸附具有SERS活性的Au纳米粒子并恒电流沉积金属Ni薄层,制备并表征了具有SERS活性的Ni超微电极。在氢氧化钠溶液中的循环伏安实验和以4-甲基苯硫酚分子作为探针分子的SERS实验结果表明,沉积速率和沉积电量是影响超微电极表面Ni的覆盖度和SERS活性的关键因素。在吸附了直径为55 nm Au纳米粒子的、直径为10 μm Au的超微电极表面,以100 μA·cm-2电流密度电沉积厚度约为5个原子层Ni的条件下,可获得Ni覆盖完好的、具有最强SERS活性的Ni超微电极。
关于我们
电化学期刊
长按识别二维码关注我们