乳腺癌内分泌治疗耐药相关信号通路的研究进展
刘程,刘伟光,张磊,陈波
中国医科大学附属第一医院
内分泌治疗在乳腺癌综合治疗中占有重要的地位,但原发性与继发性耐药是当前内分泌治疗面临的难题。研究证明,雌激素受体通路与各种因子信号通路的交叉效应是导致乳腺癌内分泌耐药的主要机制之一,针对各种通路的靶向治疗药物也成为了热点。许多临床研究结果表明靶向阻断这些信号通路的药物联合内分泌治疗药物可显著提高患者的生存率。本文根据PubMed检索获取相关资料,就近年来与乳腺癌内分泌耐药相关的信号通路及治疗策略研究进展进行综述。
原文参见:现代肿瘤医学. 2017;25(9):1480-1485.
中国的乳腺癌发病率逐年上升,且年轻化趋势显著【1】。据统计,大约有2/3的浸润性乳腺癌表现为激素受体阳性,因此内分泌治疗作为降低这类患者复发风险的手段之一,在中国激素受体阳性乳腺癌的治疗中占有重要地位。但并不是所有的激素受体阳性乳腺癌都对内分泌治疗敏感,大约有20%的激素受体阳性转移性乳腺癌患者对一线内分泌治疗产生抗药性。虽然临床医生鼓励最初从一线治疗中获益的患者使用二线或三线内分泌治疗【2】,但临床获益率已从一线氟维司群或芳香酶抑制剂的70%降低至二线或其他几线治疗的30%【3】。因此,克服原发或继发乳腺癌内分泌耐药是提高现有治疗方式(比如他莫昔芬或芳香酶抑制剂)的关键【4】。现有研究发现,多种关系到细胞生殖和存活的胞内信号通路的激活与内分泌治疗耐药有关,且和雌激素受体(ER)通路之间存在串扰机制,包括表皮生长因子受体(EGFR,HER2)、IGF-IR、FGFR以及下游的MAPK等【5】。考虑到乳腺癌是一种异质性疾病,多种机制可导致内分泌治疗耐药,开发鉴别新的预后标志物将有助于更多有效治疗选择的应用【6】。研究人员开发了一系列针对性靶向治疗药物,使为患者提供个体化的信号转导抑制剂(STI)治疗成为可能。本研究就乳腺癌内分泌治疗耐药相关的信号通路及靶向药物的研究进展情况做一综述。
1 生长因子受体(GFR)信号通路
GFR信号通路刺激肿瘤细胞增殖作用既能通过与ER通路交叉反应又能经其旁路完成。生长因子介导的雌激素受体激活是乳腺癌细胞对拮抗激素治疗产生内分泌耐药的的主要途径【7】。此外,雌激素还能增加转录生长因子α(TGFα)或胰岛素样生长因子1(IGF-1)的表达,进而激活GFR信号通路和下游的PI3K/mTOR和MAPK信号通路,促进肿瘤细胞的生长,导致内分泌治疗耐药【8,9】。乳腺癌内分泌治疗耐药相关的GFR主要有EGFR信号通路、HER2信号通路、IGF-1R信号通路、FGFR信号通路以及它们下游的PI3K/AKT/mTOR、RAF/MEK/ERK信号通路【10】。现有的证据提示,在某些生长因子受体过表达的癌症中,内分泌治疗与生长因子受体激酶抑制剂(RKI)的组合,如吉非替尼、曲妥珠单抗和拉帕替尼,无论是预防还是克服内分泌治疗耐药都是一个不错的治疗选择【6】。
1.1 表皮生长因子受体(EGFR/HER1)
信号通路在乳腺癌中,EGFR过表达可导致下游PI3K/AKT和MARK信号通路的激活,而且是不依赖雌激素的,它与内分泌治疗耐药和较差的预后相关【11】。例如,氟维司群耐药人乳腺癌细胞株的生长和ErbB3、EGFR、Erk活化密切相关【12】。在TAM耐药的MCF-7细胞株实验中我们发现吉非替尼(一种小分子EGFR抑制剂)可以有效抑制EGFR-HER2异二聚反应、磷酸化及其信号通路【12】。另外,在TAM耐药模型中还发现EGFR可以促进上皮间质转化(EMT)发生,而EMT与内分泌治疗耐药又有关【3】。吉非替尼和拉帕替尼作为酪氨酸激酶抑制剂,可以减少细胞增殖和肿瘤生长,吉非替尼能上调ERαmRNA的水平和诱导ERα的再表达,从而逆转TAM耐药【13】,拉帕替尼能恢复耐药的HER2阳性乳腺癌细胞的激素敏感性【14】。Johnston等【15】应用来曲唑+拉帕替尼或单用来曲唑对1286例绝经后ER阳性转移性乳腺癌(MBC)患者进行治疗发现,在ER阳性HER2阳性乳腺癌中,联合治疗获益,而在ER阳性HER2阴性乳腺癌中无获益。在HER2阳性组中,联合治疗提高了无进展生存(PFS)。但在Villanueva等【14】进行的一项随机多中心Ⅱ期临床研究(BES06)中,联合应用拉帕替尼和来曲唑治疗绝经后激素受体阳性MBC患者,发现联合用药具有较好的安全性,并且能克服HER2阴性患者对来曲唑的耐药。此外,另两项Ⅱ期临床研究(NCT00077025和NCT00229697)中,联合应用吉非替尼和阿那曲唑或他莫昔芬能提高一线内分泌治疗的疗效【12,16】。分析两个实验结果发现,联合用药仅对未接受过内分泌治疗或内分泌辅助治疗的患者有效。基于这些数据,一项前瞻性随机多中心的Ⅱ期一线临床研究(MINT)正在进行,该实验选取绝经后首次应用内分泌治疗的ER阳性MBC患者,给予一种新型酪氨酸激酶抑制剂AZD8931(也是针对EGFR、HER2和HER3有力的抑制剂),但目前结果显示PFS无统计学上的改善,并且毒性较大【17】。另外,实验发现HMQ16H、中药蒲葵子的提取物和一种海绵的代谢产物都可以通过不同方式减弱EGFR的作用,或许可用来改善内分泌耐药【5,18】。
1.2 人类表皮生长因子受体2(HER2)信号通路
目前,所有的临床前和临床证据都支持HER2过表达在原发性耐药中有重要作用【4,12】。对比野生型MCF-7细胞,在MCF-7/HER2-18型细胞研究中发现:HER2及ER磷酸化并活化;MAPK与AKT信号通路激活;AIB1共激活因子聚集【19】。近来研究发现在内分泌敏感细胞株中PAX2-ER-TAM复合物抑制HER2基因的表达,但在TAM耐药细胞株中,ER共激活因子AIB-1/SRC-3与PAX2竞争结合,从而导致HER2转录增加,导致对TAM耐药【20】。临床前研究表明他莫昔芬耐药细胞有能力在HER2和细胞的ER通路之间进行切换,以致细胞生长和存活【12】。此外,即使在缺少雌激素的情况下,HER2的活化也能引起ER下调并提高ER磷酸化,导致对TAM的耐药【12】。HER2也会激活下游传导通路,如PI3K/AKT和MAPK信号通路等,见图1。应用曲妥珠单抗可以上调HER2阳性乳腺癌细胞的ER和芳香酶水平,逆转内分泌耐药【21】。同时,在治疗HER2阳性乳腺癌中,联合曲妥珠单抗可以增加芳香酶抑制剂或氟维司群的治疗作用,减轻耐药反应【22,23】。这些数据为联合应用ER和HER2抑制剂提供了理论基础,一些临床研究也表明将ER和HER2同时作为靶点治疗ER阳性/HER2阳性乳腺癌能使患者受益更多【24,25】。但在MINT研究中,同时将EGFR和HER2作为靶点,未能使患者受益【17】。
1.3 胰岛素样生长因子1受体(IGF-1R)信号通路
IGF-1R是一种酪氨酸激酶细胞表面受体,活化IGF-1R信号通路能促进乳腺癌细胞的增殖、存活和转移。研究发现,IGF-1R参与了细胞对抗雌激素治疗的获得性抵抗,在他莫昔芬耐药的癌细胞中是过表达的【26】。越来越多的证据显示IGF-1R参与乳腺癌上皮间质转化(EMT)的建立和维持,而EMT与内分泌治疗耐药相关。IGF和雌激素信号通路还存在交叉反应,能互相加强协同促进ERα阳性乳腺癌细胞的增殖,加快癌症进展【27】。IGF-1R信号通路激活与PR表达缺失有关,而PR缺失与ER阳性乳腺癌的复发、侵袭、转移相关【28】。除此之外,IGF-1R还是PI3K信号通路的关键激活因子和EGFR活化的上游分子,还能与胰岛素受体底物1(IRS-1)作用激活MAPK途径【29】,因此IGF-1R过表达能通过MAPK和PI3K通路活化对TAM及氟维司群产生耐药。Ⅱ期随机临床研究NCT00626106选择曾接受内分泌治疗的局部晚期或转移性ER阳性患者,应用依西美坦或氟维司群或加尼妥单抗(ganitumab、AMG479,IGF-1R单克隆抗体)治疗,比较发现AMG479并不能改善PFS与OS【30】。目前,尚有达洛珠单抗(dalotuzumab、MK-0646)、西妥木单抗(cixutumumab、IMC-A12)、RG1507、非吉木单抗(figitumumab、CP-751,871)和AVE1642五种单克隆抗体靶向药正处于Ⅰ/Ⅱ期临床研究【31】。另有研究发现,选择性IGF-1R抑制剂(AG1024)、萨姆松蚂蚁毒液、鱼藤素(从几种植物中提取的一种天然产物)和印苦楝内酯(印度苦楝树的提取物)能抑制IGF-1R信号通路或通过靶向IGF-1R发挥抗肿瘤活性【29,32-34】。此外,毛蕊异黄酮(一种天然植物雌激素)和人类雌激素具有相似的结构,可以通过ERβ诱导抑制IGF-1R,从而引起MCF乳腺癌细胞系凋亡,随之选择性调控MAPK和PI-3K/Akt途径【35】,或许能逆转内分泌治疗耐药或用以提高内分泌治疗效果。IGF-1R似乎是一个很有前途的新的目标,尽管临床前期资料不支持IGF-1R抑制剂可实现临床获益的结果,但一些靶向IGF-1R治疗或结合传统治疗策略进行的Ⅱ/Ⅲ期临床研究仍在继续【27,36,37】。
1.4 PI3K/AKT/mTOR信号通路
PI3K/AKT/mTOR信号通路作为ER阳性乳腺癌重要的信号通路之一,实验发现在继发性内分泌耐药或长期雌激素剥夺(LTED)的ER阳性乳腺癌细胞中该通路是活化和扩增的【38,39】。致癌基因(如HER2、IGF-1R、AKT)过表达激活PI3K/AKT通路,导致对TAM、氟维司群、雌激素剥夺ER阳性乳腺癌细胞耐药(图1)。PI3K通路过度活化促进雌激素非依赖性ER转录激活【10】。相反,抑制PI3K通路会增加雌激素依赖,这就为联合应用内分泌治疗和PI3K抑制剂治疗内分泌耐药的乳腺癌提供了理论基础【40】。应用PI3K/mTOR抑制剂可以抑制LTED细胞的增殖并诱导凋亡,甚至可以恢复耐药细胞的敏感性,逆转内分泌耐药【4】。目前已开展的两项布帕昔布(BKMl20,泛PI3K抑制剂之一)联合内分泌治疗的Ⅰ期研究结果显示出较好的疗效,且不良反应易于管理【10,41】。Ⅱ期临床实验TAMRAD研究【42】和Ⅲ期临床BOLERO-2研究【43】均表明,mTOR抑制剂(依维莫司)联合使用内分泌药物可使耐药性ER阳性转移性乳腺癌患者显著获益。但在氟维司群联合匹克昔布(GDC-0941、泛PI3K抑制剂之一)或安慰剂治疗曾接受过芳香酶抑制剂治疗的ER阳性晚期乳腺癌或MBC绝经后患者的Ⅱ期临床研究FERGI中,其Ⅰ期结果显示实验组PFS总体无变化【44】。同样,在一线Ⅲ期研究(HORIZON)中,选取未接受过芳香酶抑制剂治疗的ER阳性晚期乳腺癌患者1112例,口服来曲唑联合坦西莫司与来曲唑+安慰剂比较,结果显示两组PFS、CR和PR无明显差异,在接受过辅助内分泌治疗的患者中,来曲唑联合坦西莫司组亦无显著PFS获益【45】。然而,2015年圣安东尼奥会议上报告了氟维司群联合布帕昔布或安慰剂治疗接受过芳香酶抑制剂治疗后进展的激素受体阳性/HER2阴性乳腺癌患者的Ⅲ期临床研究BELLE2的结果显示,其在总体研究人群中PFS获益不大(6.9比5个月,P<0.001),在有PIK3CA基因突变的亚组中,这个结果更让人印象深刻(PFS:7比3.2个月,P<0.001)。对布帕昔布的进一步评估正在进行,包括针对曾用依维莫司治疗过的患者的Ⅲ期BELLE-3研究【10】。另一种PI3K抑制剂Taselisib被发现能克服来曲唑耐药现象【46】。更多的靶向药物也在研发中,如L147(选择性可逆PI3K抑制剂)、XLl47(PI3K亚型抑制剂)、AZD2014(mTOR的ATP竞争抑制剂)等【47】。
1.5 成纤维细胞生长因子受体(FGFR)信号通路
FGFR基因在超过20%的ER阳性乳腺癌中是扩增的,其扩增或过表达可能是管腔B型乳腺癌预后不良和内分泌治疗耐药的主要因素【4】。AZD4547是一种强效选择性FGFR抑制剂和明显低效力的IGF-1R抑制剂【48】。同样,多韦替尼(dovitinib)是一种酪氨酸激酶抑制剂,除靶向FGFR外,还可将血管内皮生长因子受体(VEGFR)和血小板衍生生长因子受体(PDGFR)作为靶点。针对这两种抑制剂的临床研究正在进行【10,49】。
1.6 丝裂原活化蛋白激酶(MAPK)信号通路
MAPK信号通路被普遍认为参与了各种癌症的肿瘤进展和药物耐药【29】。其信号通路由RAF丝氨酸/苏氨酸激酶启动,最终活化MAP激酶(如ERK、c-junN-teminal激酶、p38MAPK),从而使下游的转录因子磷酸化。前面已经提到MAPK通路介导HER2及EGFR诱导的内分泌治疗耐药【50】。此外,ERK和p38能使AIB1和ER磷酸化【51】。MEK/MAPK信号通路的激活还参与了乳腺癌细胞对他莫昔芬和EGFR酪氨酸激酶抑制剂吉非替尼的耐药。实验显示,异鼠李素(一种广泛存在于蔬菜、水果和茶中的黄酮类化合物)可以同时抑制PI3K/AKT/mTOR和MAPK信号通路,促进线粒体细胞凋亡信号通路的激活,或许可以用于逆转内分泌耐药或者预防内分泌耐药的发生【52】。此外,Zhang等【13】发现吉非替尼能下调MAPK信号通路中信号分子的表达,从而逆转TAM耐药现象。以MAPK通路为靶点联合内分泌治疗的临床研究也正在进行中。Ⅱ期临床研究(NCT01160718)探讨氟维司群联合MAPK抑制剂司美替尼(AZD6244)治疗芳香酶抑制剂耐药晚期乳腺癌的疗效,目前已取得可喜成果,但仍需进一步验证。
2 其他
除上述信号通路外,ER表达被抑制或因表观遗传修饰(甲基化或组蛋白去乙酰作用)而丢失也可能是导致内分泌治疗耐药的机制。研究发现应用组蛋白去乙酰化酶抑制剂(HDACI)可以逆转激素抵抗和内分泌治疗耐药【4】。恩替诺特(entinostat)是一种HDACi,已经证实它可以增加ER和芳香酶的表达,使乳腺癌细胞对雌激素敏感,能被来曲唑抑制【53】。在Ⅱ期随机对照临床研究ENCORE301和NCT00676663中,应用恩替诺特+依西美坦或依西美坦+安慰剂针对接受过芳香酶抑制剂治疗的患者,比较发现,联合用药可以延长中位PFS和增加OS获益【54】。目前,一项入组600例接受过芳香酶抑制剂治疗的ER阳性MBC患者的Ⅲ期临床研究E2112正在进行。此外,中国传统中药榄香烯也能通过增加ERαmRNA的表达水平刺激ERα的再表达,逆转逆呃现象现象【13】。
ER-Src激酶轴通过原癌基因HER2和PELP1在推动内分泌耐药中发挥重要作用【55】。达沙替尼(dasatinib)是一种有效的广谱Src酪氨酸激酶ATP竞争抑制剂,但在两个Ⅱ期随机对照临床研究中,无论氟维司群还是依西美坦联合达沙替尼均未提高PFS、临床有效率和OS【55,56】。但在另外一项随机Ⅱ期一线研究中,达沙替尼联合来曲唑可以提高PFS【57】。更多类似的研究正在进行,包括Src抑制剂沙拉替尼(saracatinib)。
关键细胞周期检查点的改变导致细胞周期失调也是激素敏感性丢失的原因之一【58】。细胞周期的进行要通过细胞周期蛋白依赖激酶4/6(CDK4/6)去完成。临床前模型表明CDK4/6抑制在ER阳性乳腺癌细胞中具有特定作用【10】。帕泊昔布是一种口服选择性CDK4/6抑制剂,能阻止细胞周期从G1到S期的DNA合成【59】。针对晚期ER阳性乳腺癌的随机Ⅱ期研究(TRIO-18,PALOMA-1)数据显示,帕泊昔布和来曲唑联合应用能显著改善PFS【60】。该组合具有良好的耐受性,只出现了最常见的与药物相关毒性-粒细胞减少症【61】。基于这些数据,再加上随机、多中心、双盲的Ⅲ期临床研究PALOMA-2和NCT01740427(对比应用帕泊昔布和来曲唑或安慰剂和来曲唑治疗绝经后ER阳性HER2阴性MBC患者的效果)的结果,FDA加快了该药的批准【4】。联合用药的方案对内分泌耐药的疾病也有好处。最近,使用帕泊昔布和氟维司群或单用氟维司群治疗曾用过内分泌治疗的ER阳性MBC患者的Ⅲ期临床研究PALOMA-3和NCT10942135,结果显示联合用药能显著提高PFS【62】。目前,旨在研究内 43 35352 43 15290 0 0 1259 0 0:00:28 0:00:12 0:00:16 2725 43 35352 43 15290 0 0 1182 0 0:00:29 0:00:12 0:00:17 3409泌治疗联合CDK4/6抑制能否代替化疗的随机Ⅲ期研究PEARL正在进行。此外,评估其他的高选择性CDK4/6抑制剂比如Ribociclib和Abemaciclib的实验正在开展,根据现有公布的数据看是有效的【10】。
Maycotte和Thorburn在内分泌耐药的乳腺癌临床前模型中发现,抑制自噬和恢复细胞的内分泌敏感性和促进细胞凋亡有关。但自噬通路极其复杂,具有高度冗余性,目前尚未开发出相应的靶向治疗药物【10】。
3 小结
通过上述结果可看出通过把信号通路作为共同的靶点来改善内分泌治疗并不顺利。虽然用各种各样的治疗方式去改善内分泌治疗,但还是碰到了挑战。个人理解是因为在一些大型Ⅲ期临床研究中,同时包含了原发未治疗的Ⅳ期和结束辅助内分泌治疗后复发的ER阳性乳腺癌患者。因此,肿瘤对内分泌治疗敏感和/或耐药的变化是巨大的,原发未经治疗的Ⅳ期患者可能有较长的PFS,而已接受过几年他莫昔芬治疗的患者已发展出耐药机制,虽能从芳香酶抑制剂治疗中获益,但充其量只有6~8个月。由于这些研究未明确的纳入淘汰标准或正确的分层,可能导致PFS获益上的错误统计。虽然报道出来的都是有效的,但具体哪组从治疗中获益还不清楚,我们期待它们的结果能为改善内分泌治疗耐药带来曙光。
参考文献
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China. Lancet Oncol. 2014;15(7):e279-e289.
National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: breast cancer. V.1.2016. www.nccn.org/professionals/physician_gls/pdf/breast.pdf.
Ellis MJ, Llombart-Cussac A, Feltl D, et al. Fulvestrant 500 mg Versus Anastrozole 1mg for the first-line treatment of advanced breast cancer: overall survival analysis from the phase II first study. J Clin Oncol. 2015;33(32):3781-3787.
Stephen R, Johnston D. Enhancing endocrine therapy for hormone receptor-positive advanced breast cancer: cotargeting signaling pathways. J Natl Cancer Inst. 2015;107(10):212.
Kallirroi Voudouri, Aikaterini Berdiaki, Maria Tzardi, et al. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease. Anal Cell Pathol. 2015;2015:975495.
Milena Rondón-Lagos, Victoria E Villegas, Nelson Rangel, et al. Tamoxifen resistance: emerging molecular targets. Int J Mol Sci. 2016;17:1357.
Hawsawi Y, El-Gendy E, Twelves C, et al. Insulin-like growth factor-oestradiol crosstalk and mammary gland tumourigenesis. Biochim Biophys Acta. 2013;1836(2):345-53.
Liu Cheng, Liu Weiguang, Chen Bo. Research progress of the mechanism of endocrine therapy resistance in breast cancer. Modern Oncology, 2016;24(16):2641-2644.
Rubi Viedma-Rodriguez, Luis Baiza-Gutman, Fabio Salamanca Gomez, et al. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer. Oncol Rep. 2014;32(1):3-15.
Conleth G Murphy, Maura N Dickler. Endocrine resistance in hormone-responsive breast cancer: mechanisms and therapeutic strategies. 2016;23(8):R337-R352.
Fedele P, Calvani N, Marino A, et al. Targeted agents to reverse resistance to endocrine therapy in metastatic breast cancer: where are we now and where are we going? Crit Rev Oncol Hematol. 2012;84(2):243-251.
Meng Zhao, Bhuvaneswari Ramaswamy. Mechanisms and therapeutic advances in the management of endocrine-resistant breast cancer. World J Clin Oncol. 2014;5(3):248-262.
Zhang Xia, Zhang Bin, Liu Jie, et al. Mechanisms of gefitinib-mediated reversal of tamoxifen resistance in MCF-7 breast cancer cells by inducing ERa re-expression. Sci Rep. 2015;5:7835.
Villanueva C, Romieu G, Salva J, et al. Phase II study assessing lapatinib added to letrozole in patients with progressive disease under aromatase inhibitor in metastatic breast cancer-Study BES 06. Target Oncol. 2013;8(2):137-143.
Johnston S, Pippen J, X Jr Pivot, et al. Lapatinib Combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol. 2009;27(33):5538-5546.
Osborne CK, Neven P, Dirix LY, et al. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin Cancer Res. 2011;17(5):1147-1159.
Johnston S, Basik M, Hegg R, et al. Inhibition of EGFR, HER-2, and HER-3 signaling with AZD8931 in combination with anastrozole as an anticancer approach: Phase II randomized study in women with endocrine-therapy-naive advanced breast cancer. Breast Cancer Res Treat. 2016;160(1):91-99.
Zhan Y, Zhang Y, Liu C, et al. A novel taspine derivative, HMQ1611, inhibits breast cancer cell growth via estrogen receptor and EGF receptor signaling pathways. Cancer Prev Res. 2012;5(6):864-873.
Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER-2/neu cross-talk in Er/HER-2-POSITIVE Breast Cancer. J Natl Cancer Inst. 2004;96(12):926-935.
Chang AK, Wu H. The role of aib1 in breast cancer. Oncol Lett. 2012;4(4):588-594.
Sabnis G, Schayowitz A, Goloubeva O, et al. Trastuzumab reverses letrozole resistance and amplifies the sensitivity of breast cancer cells to estrogen. Cancer Res. 2009;69(4):1416-1428.
Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-Kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452-4461.
Xia W, Bacus S, Hegde P, et al. A model of acquired autoresistance to a potent erbb2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A. 2006;103(20):7795-7800.
Kaufman B, Mackey JR, Clemens MR, et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III tandem study. J Clin Oncol. 2009;27(33):5529-5537.
Schwartzberg LS, Franco SX, Florance A, et al. Lapatinib plus letrozole as first-line therapy for HER-2+ hormone receptor-positive metastatic breast cancer. Oncologist. 2010;15(2):122-129.
Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Front Endocrinol. 2015;6:59.
Morteza Motallebnezhad, Leili Aghebati-Maleki, Farhad Jadidi-Niaragh, et al. The insulin-like growth factor-I receptor (IGF-IR) in breast cancer: Biology and treatment strategies. Tumor Biol. 2016;37(9):11711-11721.
Bunone G, Briand PA, Miksicek RJ, et al. Activation of the unliganded estrogen receptor by egf involves the map kinase pathway and direct phosphorylation. EMBO J. 1996;15(9):2174-2183.
Holohan C, Van Schaeybroeck S, Longley DB,et al. Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 2013;13:714-726.
Robertson JF, Ferrero JM, Bourgeois H, et al. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol. 2013;14(3):228-235.
Wu J, Yu E. Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer Metastasis Rev. 2014;33(2-3):607-617.
Suh YA, Kim JH, Sung MA, et al. A novel antitumor activity of deguelin targeting the insulin-like growth factor (IGF) receptor pathway via up-regulation of IGF-binding protein-3 expression in breast cancer. Cancer Lett. 2013;332(1):102-109.
Elumalai P, Arunkumar R, Benson CS, et al. Nimbolide inhibits IGF-I-mediated PI3K/Akt andMAPK signalling in human breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct. 2014;32(5):476-484.
Badr G, Garraud O, Daghestani M, et al. Human breast carcinoma cells are induced to apoptosis by samsum ant venom through an IGF-1-dependant pathway, PI3K/AKT and ERK signaling. Cell Immunol. 2012;273(1):10-16.
Chen J, Hou R, X Zhang, et al. Calycosin suppresses breast cancer cell growth via ER-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One, 2014;9(3):e91245.
Yee D. Insulin-like growth factor receptor inhibitors: baby or the bathwater. J Natl Cancer Inst. 2012;104(13):975-981.
Yang Y, Yee D. Targeting insulin and insulin-like growth factor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2012;17(3-4):251-261.
Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452-4461.
DeGraffenried LA, Fulcher L, Friedrichs WE, et al. Reduced pten expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol. 2004;15(10):1510-1516.
Bosch A, Li Z, Bergamaschi A, et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med. 2015;7(283):283ra51.
Ma CX, Luo J, Naughton M, et al. A phase 1 trial of BKM120 (Buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor positive metastatic breast cancer. Clin Cancer Res. 2016;22(7):1583-1591.
Bachelot T, Bourgier C, Cropet C, et al. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a gineco study. J Clin Oncol. 2012;30(22):2718-2724.
Yardley DA, Noguchi S, Pritchard KI, et al. Everolimus plus exemestane in postmenopausal patients with HR (+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther. 2013;30(10):870-884.
Krop I, Johnston S, Mayer IA, et al. The FERGI phase II study of the PI3K inhibitor pictilisib (GDC-0941) plus fulvestrant vs fulvestrant plus placebo in patients with ER+, aromatase inhibitor (AI)-resistant advanced or metastatic breast cancer - part I results. Cancer Res. 2015;75(9 Suppl):S2-02.
Wolff AC, Lazar AA, Bondarenko I, et al. Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol. 2013;31(2):195-202.
Hoeflich KP, Guan J, Edgar KA, et al. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase. Genes Cancer. 2016;7(3-4):73-85.
Sylvie M Guichard, Jon Curwen, Teeru Bihani, et al. AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ breast cancer when administered using intermittent or continuous schedules. Mol Cancer Ther. 2015;14(11):2508-2518.
Gavine PR, Mooney L, Kilgour E, et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 2012;72(8):2045-2056.
André F, Cortés J. Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat. 2015;150(1):1-8.
Zardavas D, Baselga J, Piccart M. Emerging targeted agents in metastatic breast cancer. Nat Rev Clin Oncol. 2013;10(4):191-210.
Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62:233-247.
Shan Hu, Liming Huang, Liwei Meng, et al. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen activated protein kinase kinase signaling pathways. Mol Med Rep. 2015;12(5):6745-6751.
Sabnis GJ, Goloubeva O, Chumsri S, et al. Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res. 2011;71(5):1893-1903.
Yardley DA, Ismail-Khan RR, Melichar B, et al. Randomized phase II, doubleblind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol. 2013;31(17):2128-2135.
Wright GL, Blum J, Krekow LK, et al. Randomized phase II trial of fulvestrant with or without dasatinib in postmenopausal patients with hormone receptor-positive metastatic breast cancer previously treated with an aromatase inhibitor. Cancer Res. 2011;71(24 Suppl 3):PD01-01.
Llombart A, Ravaioli A, Strauss L, et al. Randomized phase II study of dasatinib vs placebo in addition to exemestane in advanced ER/PR-positive breast cancer [BMS CA180-261 Study]. Cancer Res. 2011;71(24 Suppl 3):PD01-PD02.
Paul D, Vukelja SJ, Holmes FA, et al. Letrozole plus dasatinib improves progression-free survival (PFS) in hormone receptor-positive, HER-2-negative postmenopausal metastatic breast cancer (MBC) patients receiving firstline aromatase inhibitor (AI) therapy. Cancer Res. 2013;73(24 Suppl):S3-07.
Murphy CG, Dickler MN. The role of CDK4/6 inhibition in breast cancer. Oncologist. 2015;20(5):483-490.
Dean JL, McClendon AK, Hickey TE, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle. 2012;11(14):2756-2761.
Finn RS, Crown JP, Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of estrogen receptor-positive, HER-2-negative, advanced breast cancer (PALOMA-1/TRIO-18):a randomized phase 2 study. Lancet Oncol. 2015;16(1):25-35.
Verma S, Bartlett CH, Schnell P, et al. Palbociclib in combination with fulvestrant in women with hormone receptor-positive/HER-2-negative advanced metastatic breast cancer: detailed safety analysis from a multicenter, randomized, placebo-controlled, phase III study (PALOMA-3). Oncologist. 2016;21(10):1165-1175.
Turner N, Ro J, Andre F, et al. Palbociclib in hormone-receptor positive advanced breast cancer. N Engl J Med. 2015;373(17):1672-1673.