查看原文
其他

用了这么多年的Handler,你知道还有个同步屏障的概念吗?

一只修仙的猿 郭霖 2022-12-14


/   今日科技快讯   /

近日,美国司法部指控谷歌在面对反垄断审查时很不积极,提供文件时拖拖拉拉。但谷歌称美国司法保护的要求很不合理。美国司法部估计,向谷歌发出的请求将产生485万份文件。

/   作者简介   /

大家周一早上好,新的一周继续加油哦!

本篇文章来自一只修仙的猿同学投稿,讲解了Handler中同步屏障的相关内容,相信会对大家有所帮助!同时也感谢作者贡献的精彩文章!

一只修仙的猿的博客地址:
https://juejin.cn/user/3931509313252552

/   前言   /

很高兴遇见你 ~

关于handler的内容,基本每个android开发者都掌握了,网络中的优秀博客也非常多,我之前也写过一篇文章,读者感兴趣可以去看看。

这篇文章主要讲Handler中的同步屏障问题,这也是面试的热门问题。很多读者觉得这一块的知识很偏,实战中并没有什么用处,仅仅用来面试,包括笔者。我在Handler机制一文中写到:其实同步屏障对于我们的日常使用的话其实是没有多大用处。因为设置同步屏障和创建异步Handler的方法都是标志为hide,说明谷歌不想要我们去使用他。

笔者在前段时间面试时被问到这个问题,之后重新思考了这个问题,发现了一些不一样的地方。结合了一些大佬的观点,发现同步屏障这个机制,并不如我们所想完全没用,而还是有他的长处。这篇文章则表达一下我对同步屏障机制的思考,希望对你有帮助。

文章主要内容是:先介绍什么同步屏障,再分析如何使用以及正确地使用。

那么,我们开始吧。 

/   什么是同步屏障机制   /

同步屏障机制是一套为了让某些特殊的消息得以更快被执行的机制。

注意这里我在同步屏障之后加上了机制二字,原因是单纯的同步屏障并不起作用,他需要和其他的Handler组件配合才能发挥作用。

这里我们假设一个场景:我们向主线程发送了一个UI绘制操作Message,而此时消息队列中的消息非常多,那么这个Message的处理可能会得到延迟,绘制不及时造成界面卡顿。同步屏障机制的作用,是让这个绘制消息得以越过其他的消息,优先被执行。

MessageQueue中的Message,有一个变量isAsynchronous,他标志了这个Message是否是异步消息;标记为true称为异步消息,标记为false称为同步消息。同时还有另一个变量target,标志了这个Message最终由哪个Handler处理。

我们知道每一个Message在被插入到MessageQueue中的时候,会强制其target属性不能为null,如下代码:

MessageQueue.class

boolean enqueueMessage(Message msg, long when) {
  // Hanlder不允许为空
  if (msg.target == null) {
      throw new IllegalArgumentException("Message must have a target.");
  }
  ...
}

而android提供了另外一个方法来插入一个特殊的消息,强行让target==null:

private int postSyncBarrier(long when) {
    synchronized (this) {
        final int token = mNextBarrierToken++;
        final Message msg = Message.obtain();
        msg.markInUse();
        msg.when = when;
        msg.arg1 = token;

        Message prev = null;
        Message p = mMessages;
        // 把当前需要执行的Message全部执行
        if (when != 0) {
            while (p != null && p.when <= when) {
                prev = p;
                p = p.next;
            }
        }
        // 插入同步屏障
        if (prev != null) { 
            msg.next = p;
            prev.next = msg;
        } else {
            msg.next = p;
            mMessages = msg;
        }
        return token;
    }
}

代码有点长,重点在于:没有给Message赋值target属性,且插入到Message队列头部。当然源码中还涉及到延迟消息,我们暂时不关心。这个target==null的特殊Message就是同步屏障。

MessageQueue在获取下一个Message的时候,如果碰到了同步屏障,那么不会取出这个同步屏障,而是会遍历后续的Message,找到第一个异步消息取出并返回。这里跳过了所有的同步消息,直接执行异步消息。

为什么叫同步屏障?因为它可以屏蔽掉同步消息,优先执行异步消息。我们来看看源码是怎么实现的:

Message next() {
    ···
    if (msg != null && msg.target == null) {
        // 同步屏障,找到下一个异步消息
        do {
            prevMsg = msg;
            msg = msg.next;
        } while (msg != null && !msg.isAsynchronous());
    }
    ···
}

如果遇到同步屏障,那么会循环遍历整个链表找到标记为异步消息的Message,即isAsynchronous返回true,其他的消息会直接忽视,那么这样异步消息,就会提前被执行了。

注意,同步屏障不会自动移除,使用完成之后需要手动进行移除,不然会造成同步消息无法被处理。我们可以看一下源码:

Message next() {
    ...
    // 阻塞时间
    int nextPollTimeoutMillis = 0;
    for (;;) {
        // 阻塞对应时间 
        nativePollOnce(ptr, nextPollTimeoutMillis);
        synchronized (this) {
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // 同步屏障,找到下一个异步消息
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            // 如果上面有同步屏障,但却没找到异步消息,
            // 那么msg会循环到链表尾,也就是msg==null
            if (msg != null) {
                ···
            } else {
                // 没有消息,进入阻塞状态
                nextPollTimeoutMillis = -1;
            }
            ···
        }
    }
}

可以看到如果没有即时移除同步屏障,他会一直存在且不会执行同步消息。因此使用完成之后必须即时移除。但我们无需操心这个,后面就知道了。

/   如何发送异步消息   /

上面我们了解到了同步屏障的作用,但是会发现postSyncBarrier方法被标记为@hide,也就是我们无法调用这个方法。那,讲了这么多有什么用?


咳咳~不要慌,但我们可以发异步消息啊。在系统添加同步屏障的时候,不就可以趁机上车了,是吧。

添加异步消息有两种办法:

  • 使用异步类型的Handler发送的全部Message都是异步的
  • 给Message标志异步

给Message标记异步是比较简单的,通过setAsynchronous方法即可。

Handler有一系列带Boolean类型的参数的构造器,这个参数就是决定是否是异步Handler:

public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {
    mLooper = looper;
    mQueue = looper.mQueue;
    mCallback = callback;
    // 这里赋值
    mAsynchronous = async;
}

在发送消息的时候就会给Message赋值:

private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
        long uptimeMillis) {
    msg.target = this;
    msg.workSourceUid = ThreadLocalWorkSource.getUid();
    // 赋值
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

但是异步类型的Handler构造器是标记为hide,我们无法使用,但在api28之后添加了两个重要的方法:

public static Handler createAsync(@NonNull Looper looper) {
    if (looper == null) throw new NullPointerException("looper must not be null");
    return new Handler(looper, null, true);
}


public static Handler createAsync(@NonNull Looper looper, @NonNull Callback callback) {
    if (looper == null) throw new NullPointerException("looper must not be null");
    if (callback == null) throw new NullPointerException("callback must not be null");
    return new Handler(looper, callback, true);
}

通过这两个api就可以创建异步Handler了,而异步Handler发出来的消息则全是异步的。

public void setAsynchronous(boolean async) {
    if (async) {
        flags |= FLAG_ASYNCHRONOUS;
    } else {
        flags &= ~FLAG_ASYNCHRONOUS;
    }
}

/   如何正确使用   /

上面我们似乎漏了一个问题:系统什么时候添加同步屏障?

异步消息需要同步屏障的辅助,但同步屏障我们无法手动添加,因此了解系统何时添加和删除同步屏障是非常必要的。只有这样,才能更好地运用异步消息这个功能,知道为什么要用和如何用。

了解同步屏障需要简单了解一点屏幕刷新机制的内容。放心,只需要了解一丢丢就可以了。

我们的手机屏幕刷新频率有不同的类型,60Hz、120Hz等。60Hz表示屏幕在一秒内刷新60次,也就是每隔16.6ms刷新一次。屏幕会在每次刷新的时候发出一个 VSYNC 信号,通知CPU进行绘制计算。具体到我们的代码中,可以认为就是执行onMesure()、onLayout()、onDraw()这些方法。好了,大概了解这么多就可以了。 

了解过 view 绘制原理的读者应该知道,view绘制的起点是在 viewRootImpl.requestLayout() 方法开始,这个方法会去执行上面的三大绘制任务,就是测量布局绘制。但是,重点来了:

调用requestLayout()方法之后,并不会马上开始进行绘制任务,而是会给主线程设置一个同步屏障,并设置 ASYNC 信号监听。当 ASYNC 信号的到来,会发送一个异步消息到主线程Handler,执行我们上一步设置的绘制监听任务,并移除同步屏障。

这里我们只需要明确一个情况:调用requestLayout()方法之后会设置一个同步屏障,知道ASYNC信号到来才会执行绘制任务并移除同步屏障。

那,这样在等待ASYNC信号的时候主线程什么事都没干?是的。这样的好处是:保证在ASYNC信号到来之时,绘制任务可以被及时执行,不会造成界面卡顿。但这样也带来了相对应的代价:

  • 我们的同步消息最多可能被延迟一帧的时间,也就是16ms,才会被执行
  • 主线程Looper造成过大的压力,在VSYNC信号到来之时,才集中处理所有消息

改善这个问题办法就是:使用异步消息。当我们发送异步消息到MessageQueue中时,在等待VSYNC期间也可以执行我们的任务,让我们设置的任务可以更快得被执行且减少主线程Looper的压力。

可能有读者会觉得,异步消息机制本身就是为了避免界面卡顿,那我们直接使用异步消息,会不会有隐患?这里我们需要思考一下,什么情况的异步消息会造成界面卡顿:异步消息任务执行过长、异步消息海量。

如果异步消息执行时间太长,那即时是同步任务,也会造成界面卡顿,这点应该都很好理解。其次,若异步消息海量到达影响界面绘制,那么即使是同步任务,也是会导致界面卡顿的;原因是MessageQueue是一个链表结构,海量的消息会导致遍历速度下降,也会影响异步消息的执行效率。所以我们应该注意的一点是:

不可在主线程执行重量级任务,无论异步还是同步。

那,我们以后岂不是可以直接使用异步Handler来取代同步Handler了?是,也不是。

同步Handler有一个特点是会遵循与绘制任务的顺序,设置同步屏障之后,会等待绘制任务完成,才会执行同步任务;而异步任务与绘制任务的先后顺序无法保证,在等待VSYNC的期间可能被执行,也有可能在绘制完成之后执行。因此,我的建议是:如果需要保证与绘制任务的顺序,使用同步Handler;其他,使用异步Handler。

/   最后   /

技术深挖,总是能学到一些更加不一样的知识。当知识的广度越来越广,知识之间的联系会迸发出不一样的火花。

第一次学习Handler,仅仅知道可以发送消息并执行;第二次学习Handler,知道了其在Android消息机制重要地位;第三次学习Handler,知道了原来Handler和屏幕刷新机制还有这么一个联系。

温故而知新,古人诚不欺我。

推荐阅读:
我的新书,《第一行代码 第3版》已出版!
这一篇TCP总结请收下
用Jetpack Compose写一个玩安卓App

欢迎关注我的公众号
学习技术或投稿


长按上图,识别图中二维码即可关注

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存