其他
在 B 站外,我用代码看到了另一批“后浪”!
The following article is from 凹凸数据 Author 等你下课
作者 | 等你下课
来源 | 凹凸数据(ID:alltodata)
知乎回答:如何评价 B 站 2020 年五四青年节宣传短片《后浪》? 人民日报微博“奔涌吧,后浪!这是#献给年轻一代的演讲#”下评论 bilibili献给新一代的演讲《后浪》弹幕
评论情感倾向
""" 你的 APPID AK SK """
APP_ID = '你的APP_ID'
API_KEY = '你的API_KEY'
SECRET_KEY = '你的SECRET_KEY '
client = AipNlp(APP_ID, API_KEY, SECRET_KEY)
text = "XXXXXXXX"
""" 调用词法分析 """
response = client.sentimentClassify(text)
# "sentiment":2, //表示情感极性分类结果 0:负向,1:中性,2:正向
# "confidence":0.40, //表示分类的置信度
# "positive_prob":0.73, //表示属于积极类别的概率
# "negative_prob":0.27 //表示属于消极类别的概率
for info in response['items']:
if info ['sentiment'] == 2:
print("正向")
if info ['sentiment'] == 0:
print("负向")
if info['sentiment'] == 1:
print("中性")
print("可信度:",info['confidence'])
print("属于积极类别的概率是:",info['positive_prob'])
print("属于消极类别的概率是:",info['negative_prob'])
词云
from wordcloud import WordCloud, ImageColorGenerator
isCN = 1 # 0:英文分词 1:中文分词
back_coloring_path = '浪花.jpg' # 设置背景图片路径
text_path = 'reviews.txt' # 设置要分析的文本路径
stopwords_path = 'stop_word.txt' # 停用词词表
imgname1 = '词云图.png' # 保存的图片名字1(只按照背景图片形状)
back_coloring = imread(back_coloring_path) # 设置背景图片
wc = WordCloud(#font_path = font_path # 设置字体
font_path='C:\Windows\Fonts\simfang.ttf',
#font_path='hanyiqihei.ttf',
background_color = 'white', # 设置背景颜色
max_words = 3000, # 设置显示的最大词数
mask = back_coloring, # 设置背景图片
max_font_size = 200, # 设置字体最大值
min_font_size = 20, # 设置字体最小值
random_state = 42, # 随机有N种配色方案
width = 2000 , height = 1720 ,margin = 4 )
words = {}
for i in word_counts:
words['{}'.format(i[0])] = i[1]
wc.generate_from_frequencies(words)
# txt_freq例子为 { word1: fre1, word2: fre2, word3: fre3,......, wordn: fren }
plt.figure()