其他
一场B站服务端开发面试之旅
The following article is from 我是程序员小贱 Author 蓝
操作系统相关
自旋锁和一般锁的区别是什么?为什么要使用自旋锁?
自旋锁通常会出现哪些问题?
那么自旋锁和其它锁到底有啥不同?
那么在Java中如何去实现一个自旋锁
public class SpinLock {
private AtomicReference<Thread> cas = new AtomicReference<Thread>();
public void lock() {
Thread current = Thread.currentThread();
// 利用CAS
while (!cas.compareAndSet(null, current)) {
// DO
}
}
public void unlock() {
Thread current = Thread.currentThread();
cas.compareAndSet(current, null);
}
}
自旋锁有哪些优点?
因为运行在用户态,没有上下文的线程状态切换,线程一直处于active,减少了不必要的上下文切换,从而执行速度较快 因为非自旋锁在没有获取锁的情况下会进入阻塞状态,从而进入内核态,此时就需要线程的上下文切换,因为阻塞后进入内核调度状态,会导致用户态和内核态之间的切换,影响锁的性能。
了解哪些I/O模型?select是阻塞IO吗?
首先将IO模型给安排一遍,然后把自己很熟悉的IO模型详细说一波并介绍出应用场景,这个装的X就算比较完美,具体的非常详细的在下一篇文章,这里简要说一波。
我们知道在调用某个函数的时候无非就是两种情况,要么马上返回,然后根据返回值进行接下来的业务处理。当在使用阻塞IO的时候,应用程序会被无情的挂起,等待内核完成操作,因为此时的内核可能将CPU时间切换到了其它需要的进程中,在我们的应用程序看来感觉被卡主(阻塞)了。
当使用非阻塞函数的时候,和阻塞IO类比,内核会立即返回,返回后获得足够的CPU时间继续做其它的事情。
当使用fgets等待标准输入的时候,如果此时套接字有数据但不能读出。IO多路复用意味着可以将标准输入、套接字等都当做IO的一路,任何一路IO有事件发生,都将通知相应的应用程序去处理相应的IO事件,在我们看来就反复同时可以处理多个事情。这就是IO复用。
在信号驱动式 I/O 模型中,应用程序使用套接口进行信号驱动 I/O,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个 SIGIO 信号,可以在信号处理函数中调用 I/O 操作函数处理数据。
用程序告知内核启动某个操作,并让内核在整个操作(包括将数据从内核拷贝到应用程序的缓冲区)完成后通知应用程序。那么和信号驱动有啥不一样?
讲讲select和epoll的区别?
这里一样的套路,先说出两者的用途,然后两者的优缺点。
select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件 select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程 内核 / 用户空间内存拷贝问题,select每次都会改变内核中的句柄数据结构集,因而每次select调用时都需要从用户空间向内核空间复制所有的句柄数据结构,产生巨大的开销 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量
epoll在内核中会维护一个红黑树和一个双向链表,红黑树存放通过epoll_ctl方法向epoll对象中添加进来的事件,所以不需要每次调用epoll_wait都全量复制所有的事件结构。双向链表存放就绪的事件,所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法,这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。调用epoll_wait就会直接返回链表中的就绪事件,效率高。
select适合少量活跃连接,一般几千。 epoll适合大量不太活跃的连接。 乐观锁和悲观锁了解吗?
这个问题延伸的问题会很多,比如线程安全,CAS原理,优缺点等。
什么是缓存穿透?如何避免?什么是缓存雪崩?何如避免?
一般来说,缓存系统会通过key去缓存查询,如果不存在对应的value,就应该去后端系统查找(比如DB)。这个时候如果一些恶意的请求到来,就会故意查询不存在的key,当某一时刻的请求量很大,就会对后端系统造成很大的压力。这就叫做缓存穿透。
对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该key对应的数据insert了之后清理缓存。对一定不存在的key进行过滤。可以把所有的可能存在的key放到一个大的Bitmap中,查询时通过该bitmap过滤。
当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,会给后端系统带来很大压力。导致系统崩溃。
在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
redis相关
如果是后端/服务端面试的同学,怎么说都的去找一本redis书来看看,其出现的概率只有那么大了,切记切记。看看B站问了哪几个问题。
redis的淘汰删除策略了解吗?
volatile-lru
在键空间中设置过期时间,移除哪些最近最少使用的key,占着茅坑不拉屎的key
allkeys-lru
移除最近最少使用的key
volatile-random
在键空间中设置过期时间,随机移除一个key
allkeys-random
随机移除一个key
noeviction
当内存使用达到阀值的时候,所有引起申请内存的命令会报错;
定时删除
很简单,设置一个闹钟,闹钟响了就删除即可。这种方式对于内存来说还是比较友好,内存不需要啥额外的操作,直接通过定时器就可保证尽快的删除。对于CPU来说就有点麻烦了,如果过期键比较多,那么定时器也就多,这删除操作就会占用太多的CPU资源。
惰性删除
每次从键空间获取键的时候检查键的过期时间,如果过期了,删除完事。
定期删除
每隔一段时间就去数据库检查,删除过期的键。
Mysql
Mysql中使用的锁有哪些?什么时候使用行锁,什么时候会使用表锁?
了解过间隙锁吗?间隙锁的加锁范围是怎么确定的? 了解B+树吗?B+树什么时候会出现结点分裂?
这个回答在上一篇的B+树已经详细说了。这里简述一下:
将已满结点进行分裂,将已满节点后M/2节点生成一个新节点,将新节点的第一个元素指向父节点。 父节点出现已满,将父节点继续分裂。 一直分裂,如果根节点已满,则需要分类根节点,此时树的高度增加。
事务还没执行完数据库挂了,重启的时候会发生什么? undo日志和redo日志分别是干嘛的?
简单讲讲数据库的MVCC的实现原理?
细说太多了,几个大写字母代表啥,这几个大写字母又是如何关联起来完事。细问再深究
mysql的binlog日志什么时候会使用?
模式1--row模式
每一行的数据被修改就会记录在日志中,然后在slave段对相同的数据进行修改。比如说"update xx where id in(1,2,3,4,5)",使用此模式就会记录5条记录
模式2--statement模式
修改数据的sql会记录到master的binlog中。slave在复制的时候sql thread会解析成和原来maseter端执行过的相同的sql在此执行
模式3--mixed模式
mixed模式即混合模式,Mysql会根据执行的每一条具体sql区分对待记录的日志形式。那么binlog的主从同步流程到底是咋样的
基本数据结构
使用LRU时,如果短时间内会出现大量只会使用一次的数据,可能导致之前大量高频使用的缓存被删除,请问有什么解决办法? 了解过循环链表吗?它的长度怎么计算?
他的主要特点是链表中的最后一个节点的指针域指向头结点,整个链表形成一个环。*这里*循环链表判断链表结束的标志是,判断尾节点是不是指向头结点
哪种数据结构可以支持快速插入,删除,查找等操作?
假设使用单链表存储n个元素,其中元素有序如下图所示
这么多索引是不是就很浪费内存嘞?
两者其查找的时间复杂度均为O(logn) ,那跳表还有哪些优势?
说实话,红黑树确实比较复杂,面试的时候让你写红黑树,你就给他大嘴巴子?
我们通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值 K ,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。当我们往跳表中插入数据的时候,我们可以选择同时将这个数据插入到部分索引层中。
Redis中的有序集合采用了跳表的方式来实现,其实还采用了散列表等数据结构进行融合。它在插入,删除等都有比较快的速度,虽然红黑树也可以做到,但是红黑树对于按照区间查找数据这个操作,跳表可以做到 O(logn) 的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了
平时爱看技术博客吗?分享一篇最近的技术博客?平时上B站吗?
总结
请记下以下几点:
公司招你去是干活了,不会因为你怎么怎么的而降低对你的要求标准。 工具上面写代码和手撕代码完全不一样。 珍惜每一次面试机会并学会复盘。 对于应届生主要考察的还是计算机基础知识的掌握,项目要求没有那么高,是自己做的就使劲抠细节,做测试,只有这样,才知道会遇到什么问题,遇到什么难点,如何解决的。从而可以侃侃而谈了。 非科班也不要怕,怕了你就输了!一定要多尝试。
更多精彩推荐
☞“一线城市,年薪30万+,我却裸辞回老家”一个前程序员的 10 年职业思考
☞华为出售荣耀为不实消息,赵明曾在内部否认;迅雷前CEO陈磊涉嫌职务侵占罪被调查 ;Python 3.9发布|极客头条
☞Swarm、IPFS 、BigchainDB:数据存储和去中心化