前言
我们在科学研究过程中,进行统计学分析,总要拿着P值去报告结果,P值究竟什么意思呢?P值大小对我们有多重要,今天小编就扒一扒p值到底该如何对待。
P值得历史可以追溯到1770年,数学家拉普拉斯在处理50万左右的生育数据时,发现男性的生育率超过女性,对于这个无法解释的“超越”,他计算了一个叫做“P值”的东西,以确定这个“超越”是真实的(Stigler 1986, P.134)。
很多统计学家误以为关于P值的正式文献是费雪发表的,其实不然,最早在文献中正式阐述P值及其计算的,是统计学家Karl Pearson,你可能不了解他,但是他的Pearson卡方检验你一定知道,这篇关于卡方检验的文章当时被发表在《哲学杂志》上,文章中一同被介绍的,还有一个被叫做“P值”的东东,见史料。
P值能风靡学术界这么多年,费雪是第一推手,被他推动的除了P值,还有被称为“费雪学派”(Fismatchherian)的假设检验思想。简单介绍下他的思想:
如果我们想要match检验一个样本是否来自某个分布已知的总体,首先要建立一个“原假设”(null hypothesis),比如,下图的例子我们假设该样本来自正态总体N(m0,σ),那么原假设为:
H0:m=m0
但实际上我们得到的样本均值不是m0,而是,那么Fisher他老人家当时的想法是:在一个样本均值为m0的正态总体中,抽样得到这个均值为的样本的几率会有多大?我要是能计算出这个概率,就知道“这个样本来自该总体”这件事有多靠谱了,如果概率太小,就认为是不靠谱的事情,那么就可以认定这个假设是错的。这就是假设检验里的“小概率事件原理”,这个概率就是后来风靡学术界的“P值”,一般认为概率小于5%,就是不靠谱的事情,则需要拒绝原假设。
到此为止,Fisher大神只字未提“备择假设”,也从没说任何关于“接受”某个假设的事情,在Fisher的检验哲学里,
1、检验是基于无限总体中抽出的一个(注意是一个)样本;
2、显著性检验的基础是基于原假设而得出的假想概率,这些检验不能导出任何关于真实世界的概率论断。
因此,费雪以及他的P值检验思想,从来没有涉及到“备择假设”的概念,没有被认为可以用来证明某个假设是对的。
欢迎关注生信人