清华陈国强教授:一个可能引领未来生命科学发展的新方向 — PHBHHx和它的衍生物
“大家好,我叫陈国强。因为这个名字,很多病人给我打电话,问我怎么治疗白血病。我是一个理工科教授,不是医生。之所以一直接到这样的电话,现在大家已经知道原因了。也正因为如此,我决定开始研究医学。”
清华大学生命科学学院教授陈国强,应上海交大医学院院长陈国强之邀,来沪参加“医学遇见工程学”论坛。他的开场白非常吸引人,而他的报告内容更为精彩,让我们领略了一个可能引领未来生命科学发展的新方向——PHBHHx和它的衍生物。
这串字母听起来很复杂,但它堪称“生命神器”:可以促进细胞再生;可以补脑,改善老年痴呆症状;还能减少钙流失,其衍生物目前已作为针对航天员骨质疏松的候选口服药物,随“天舟一号”飞到太空,以检测它在微重力环境下的体外药效。
PHBHHx其实是一种细菌合成的聚合物材料。换言之,它是一种微生物材料。经过一系列纯化加工,它被做成了纺织品、杯子等生活或工业用品。但最令科学家兴奋的是,由于它有很好的生物相容性和生物降解性,其医用价值被逐渐开发出来。这种微生物材料对组织的修复作用明显,一旦它在再生医学领域的应用取得突破,生命的定义很可能将被重写。
当医学遇到工程学,清华陈国强教授为我们预见了一个具有更多可能性的未来。
缘起,寻找一种“超级细菌”
现有生物制造的缺点多多,包括反应过程慢、大量耗费淡水、高能耗、转化率低等,下一代生物制造技术需要克服这些弊端。科学家开始寻找一种能在高盐度海水里依然存活的神奇细菌。
人类在大工业文明中已经推进了好几个世纪,我们享受着工业文明的成果,整齐划一的批量化生产,满足全球人口快速增长后的大量生活需求。而与此同时,人们也愈发意识到其弊端。
化工制造的缺点在于需要高温、高压、石油原料、易燃易爆、气味难闻,优点在于反应快、转化率高、过程持续、耗水不多、产物浓度高、产物回收容易,一句话,就是成本低。和它相比,生物制造的优点是水相反应、常温常压、农产品为原料、不燃不爆、一般没有难闻气味,缺点是反应过程慢、原料转化率低、高能耗、易染菌、过程不连续、大量耗淡水、产物浓度低、产物回收困难、设备投资大。科学家在寻找下一代生物制造技术,目标就是解决现有生物制造的缺点。
现有生物制造最大的缺陷,是制造过程需要大量耗费淡水。这让它在很多地方变得不可持续,因为大家都知道,淡水资源十分珍贵。
怎么办?转动手头的地球仪,你会找到一个新答案——海水!地球上70%的表面被海洋覆盖,地球上97%的水是海水,这是从没有被利用的发展生物制造的“潜力股”啊。
且慢,目前用于生物制造的所有工业微生物都不能在海水中生长!陈国强说起一段儿时回忆:在海边长大的他,有一个朴素的生活智慧,小伙伴们只要打架了,一身皮肉伤,就去海里洗洗,伤口很快就好了。
这是为什么?因为细菌没法在海水里存活下来。简单说,它们会被“咸”死。
如果能在取之不竭的海水中找到一种可以存活下来的细菌,不就解决大量耗费淡水资源这个生物制造的“短板”了吗?幸运的是,还真有一些细菌喜欢盐分,能在海水中快速生长。科学家给他们取了一个形象的名字,叫“嗜盐细菌”,它们能在高浓度海水中生长,并产生菌红素,把海水染成一片红色。
陈国强团队开始寻找能在海水中快速生长的生物制造菌种。他们希望在世界上最热的地方筛选出超强细菌。因为如果在最酷热、盐含量最高的海水中找到这种神奇细菌,那么说明它在其他海水环境里也一定能存活下来,因为它的生命力太顽强了。
他们把目光投向了新疆的艾丁湖,世界上最酷热、干燥的地区之一。在那里,年降水量不到20毫米,蒸发量大于降水量好几千倍,年平均气温14℃,极端高温达到48℃,地表温度超过80℃。
2011年7月14日,新疆艾丁湖区域自动气象站最高气温50.2℃,这是中国陆地首次观测到的超过50℃的记录,成为全国最热的地方。在艾丁湖,盐浓度达每升200克。
陈国强希望在艾丁湖筛选出适应力最强的工业微生物菌株。他们真的做到了。经过不懈努力,这个团队成功地获得了两株具有高度适应性的耐盐细菌———野生Halomonas TD和LS21。
验证,成为合格的微生物底盘
不少微生物能生产一种名叫PHA(聚羟基脂肪酸酯)的塑料。过去30年的技术不断成熟,已可以实现PHA的大规模发酵生产,将PHA制作成各种化学制品。艾丁湖里获得的两株耐盐细菌,被证明都能生产生物塑料PHA。
成功获得两株在恶劣环境下依然顽强生长的耐盐细菌后,科学家需要选择一种大宗产品,来验证这些嗜盐菌能否成为“下一代生物制造”的微生物底盘。
把它们做成什么呢?“塑料,还是制成塑料吧!”陈国强感觉,这符合当前减少“白色污染”成灾的巨大需求。
不少微生物能生产一种名叫PHA(聚羟基脂肪酸酯)的塑料,它有多种结构。过去30年的技术不断成熟,已经可以实现PHA的大规模发酵生产。
我们都知道,PHA可以制成各种化学制品,包括纸杯、食品袋、纺织品等。不过,现有的生物制造技术无法使PHA制造成本降低到能与石油基材料竞争的水平,所以,迫切需要发展新一代生物制造技术,使PHA能与石油基材料(塑料)在成本上进行竞争。
不要怀疑,你所用的纸杯、食品袋、纺织品,是石油经过一系列工艺处理制成的。而现在,科研人员希望这个底盘材料由细菌来接盘。
陈国强团队发现,他们成功获得的两株具有高度适应性的耐盐细菌,都能产生物塑料PHA。它们距离成为下一代生物制造技术的“接班人”又进了一步,因为这些能在海水中快速生长的细菌,至少解决了现有生物制造需要大量耗费淡水的缺点。如今,海水可以代替淡水,参与生物制造了。
并且,HalomonasTD的操作不需要在无菌条件下进行。因为本身高盐、高碱的特性,让它不易被染菌,可实现无灭菌发酵,可连续培养,这意味着生产制造成本将大大降低。
“嗜盐细菌HalomonasTD是一个可以满足未来生物制造要求的底盘细胞。下一步就是工程改造了。”陈国强发现,国内外已有20个生产和应用PHA的企业,PHA的应用包括药品与化学、食品与养殖、生物移植、工业等,拥有现成的企业意味着开发可以进一步提速。
意外之喜,潜力无限的医用价值
用于开发软骨修复材料、神经导管、人工食道,改善老年痴呆病情,减少钙流失……嗜盐细菌的医用价值令科学世界遐想连篇。
“这个PHA由于是生物合成的,具有生物相容性和生物降解性,加上良好的机械和加工性能,它被赋予了巨大的医用价值。”陈国强说,与PLA、PLGA、PCL等传统医用植入材料相比,嗜盐细菌制造的PHA具有更好的医学性能。
目前,PHA中的P4HB已经作为手术缝线,在美国批准进入了临床。此外,由于PHA具有多种结构,还被看好用于开发软骨修复材料、神经导管、人工食道等。
在陈国强开展的一项有关体内降解的动物实验中,PHA家族中的一种微生物材料———PHBHHx,通过皮下植入体内,6个月后,与传统植入材料PLA、PHB相比,只有它保持了原型;也只有它的组织相容性最好,接触面没有炎症。
这说明,这种微生物材料具备与体内组织相容的特性,应用性能优于常见的PLA、PHB。
能否将它用于开发软骨修复材料、神经导管、人工食道?陈国强的实验继续往前推进。
在有关软骨修复材料的动物实验中,PHBHHx多孔支架植入动物体内软骨破损处,16周后,科研人员欣喜地观察到,破损软骨完全长好。并且,这种材料80%的分子量在植入修复软骨的过程中降解。
前期,作为支架材料,让软骨长上去;后期,自动降解,排除了今后排异的可能。PHBHHx的这些特性,使其成为医生梦寐以求的软骨破损修复的完美支架材料。
在作为神经导管的动物实验中,陈国强团队再次收获惊喜。实验1个月后,PHBHHx神经导管成功地促进了神经的再生。电生理分析证明,神经导管促进了神经功能的恢复。并且,它在体内的降解情况良好。
在他们开展的作为人工食道的动物实验中,这一材料植入体内53天后,食道再生成功。
“我们开始探究它如此快速促进组织再生的机制,结果发现,在培养过程中,它产生的降解产物———3-羟基丁酸(3HB)促进了细胞的生长。”陈国强说,这种微生物材料能快速促进组织(软骨、神经、食道)再生,并较为长久地保持植入骨架的机械性能和形状,其降解产物3HB是促进细胞快速生长的原因。
这是一个新线索。那么,是否意味着获得3-羟基丁酸,就能用于促进细胞生长呢?这给下一步再生医学的应用开发,提供了无限可能。
与此同时,这个团队还发现,3HB在动物实现中,竟改善了老年痴呆小鼠的各项记忆指标。科研人员发现,3HB的衍生物HBME能有效提升阿尔兹海默症模型小鼠的空间学习记忆能力,修复实验小鼠的认知功能损伤,还能够减轻小鼠的焦虑症状。
进一步研究发现,HBME下调了ApoE(载脂蛋白,阿尔兹海默症的遗传危险因子)和Casp3(介导细胞凋亡的重要蛋白)的基因转录。
收获还不止这些,研究表明,3HB还能够降低血清钙浓度,减少血液中的钙流失、促进钙沉积。换言之,它具有对抗骨质疏松的潜力。目前,3HB已作为针对航天员骨质疏松的候选药物,随“天舟一号”货运飞船飞到太空,开展体外试验。
随着研究的深入,陈国强团队发现的线索越来越多,也越来越令人振奋:3HB及其衍生物HBME能作为一种补充能源替代葡萄糖,为细胞提供正常生理活动和生存所必需的能量;HBME能保护线粒体功能,修复氧化损伤,这让它与抗衰老联系在了一起;它们通过下调ApoE和Casp3的基因转录水平,改善神经元功能,抑制神经细胞凋亡。
当然,HBME作为治疗阿尔茨海默症的候选药物,优势也十分明显。它穿越血脑屏障的能力更强,而且副作用小(微生物生产、生物体内物质)、生产工艺简便(转化步骤少)。
潜力无限,那安全性如何呢?陈国强团队以健康小鼠为研究对象,给予3HB的单酯衍生物,在给药剂量高达每公斤体重每小时2.14克时,观察到轻度胃肠道不适,未见其他毒副作用。从动物实验看,怀孕大鼠从妊娠早期全程接受灌胃,给予每公斤体重每小时2克3HB的单酯衍生物处理,未见胎盘受到任何不良影响。从肝脏实验看,3HB在体内代谢后,最后分解为二氧化碳和水。
这些实验无疑显著增加了3HB、HBMB的成药潜力。尽管一切还在动物实验阶段,但这个工业生物技术的探究之旅无疑已打开生命探索的新大门。
陈国强表示,“新的工业生物技术可以制造出各种材料和药物,从未来工业生物技术看医学,将给我们很多展望的新空间和值得期待的新可能。”
来源:文汇网
免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号chemshow (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。