查看原文
其他

中科院兰州化物所周峰研究员课题组与香港城市大学王钻开教授课题组合作在仿生水下可逆黏附材料研究方面获重要进展

点击上方“蓝字” 一键订阅

大多数胶黏剂在空气中具有优异的粘接强度,而在水中却很快丧失效果,这主要是因为水分子进入粘合界面处对胶黏剂分子产生水化/溶胀/降解作用,从而使得粘接性能迅速丧失。因此,水下高黏附材料一直是工程材料领域的研究难点与热点。科研人员通过仿生多巴胺、界面超分子作用、聚电解质络合作用等手段发展了不同类型的水下黏附材料,但均很难实现材料的水下可逆黏附性调控。

近日,中国科学院兰州化学物理研究所周峰课题组与香港城市大学王钻开课题组合作设计制备了一种仿生水下“胶水”,该材料不仅在水下具有较强的黏附性,更重要的是其在水下的黏附强度可以通过控制界面温度进行可逆调节。 


该材料体系设计理念来源于贻贝足丝在水下具有高黏附强度和水下粘合剂快速失效。为了使材料具备水下高粘附性,研究人员首先制备了一种水下黏附性聚合物,即将黏附性多巴胺分子与疏水单体聚合制备仿生黏附性线性聚合物;为了实现水下黏附强度的可调节性,又设计制备了一种温度响应性聚合物(聚N-异丙基丙烯酰胺),该聚合物在低于其相转变温度条件下与水分子形成分子间氢键而呈现高度水化状态,在高于其相转变温度时形成分子内氢键而呈现去水化状态。因此,依据水下胶黏剂失效原理,将此种响应性分子覆盖到黏附分子表面。通过调节温度,调节界面处分子的水化与去水化,可以实现水下黏附可逆调控。 


为了能够使响应性分子顺利均匀组装到黏性聚合物表面,在上述两种聚合物体系中引入超分子主客体,通过分子识别作用,实现响应性聚合物在黏附性聚合物表面的高效组装。该材料体系的水下黏附强度调节机理如图1所示。通过微/宏观黏附性测试证实,在较高温度下该材料表面具有较高的水性黏附强度,而在室温环境下几乎没有任何黏附。这种高黏附-低黏附强度转变可以实现可逆调节,几乎不损失其水下黏附强度(图2)。 


图1.仿生水下“胶水”黏附可逆调控机理图 


图2.仿生水下“胶水” 黏附强度可逆调节


除此之外,该材料还具有如下优点:不受基底材料的限制,在各类材料表面均具有水下黏附强度可逆调控性能;通过增加表面粗糙度即可提升材料黏附强度;通过调节温敏高分子组成改变其最低相转变温度,可实现黏附强度温度转变点的调节等。 


以上研究成果以“Bio-inspired reversible underwater adhesive”为题发表在Nature子刊Nat. Commun. (doi:10.1038/s41467-017-02387-2)上,兰州化物所吴杨博士为论文的共同第一作者。 


该工作得到了国家自然科学基金委、香港研究基金会、国家重点研发计划、中科院、深圳科技局及香港城市大学等基金项目支持。 


论文链接:

https://www.nature.com/articles/s41467-017-02387-2#Ack1

免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn

相关进展

浙江大学徐志康教授课题组:贻贝仿生共沉积技术制备水下低气体粘附透明材料

密歇根理工大学研发“水下智能胶“ 粘合剂领域新突破

仿生水下快速胶黏剂问世

受贻贝启发 加州大学圣塔芭芭拉分校科学家研制出兼具不易断裂和伸展性新材料

浙江大学徐志康教授课题组: 在基于贻贝仿生化学的表界面工程领域取得新进展

关注高分子科学技术  👉


长按二维码关注

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

点击下方“阅读原文”查看更多


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存