上海科技大学凌盛杰教授与合作者发表生物大分子纳米微纤材料综述
近日,上海科技大学物质学院凌盛杰教授与塔夫茨大学David L. Kaplan教授及麻省理工学院Markus J. Buehler教授合作,以“Nanofibrils in nature and materials engineering”为题,在知名学术期刊《Nature Reviews Materials》上在线发表关于生物大分子纳米微纤材料的综述。
生物大分子纳米微纤广泛存在于生物结构材料中,如由纤维素、甲壳素和丝蛋白组成的纳米微纤。虽然这些生物大分子纳米材料具有不同的化学组成,但在介观尺度上,它们往往具有类似的结构组织。例如,这些生物大分子纳米组装体通常被认为是半晶体聚合物材料,且晶体尺寸大都被限制在一定的尺度(如2-5纳米的宽度)。在更高结构尺度上,这些纳米微纤通常结合形成微纤维束,甚至形成高度有序的二维、三维空间排列。
这些自然界中存在的独特的材料构筑方式,不仅赋予了生物材料优异的力学性能,还使其具有特异功能。比如,通过精确控制微晶(β-折叠)和微纤的尺寸,蜘蛛能够纺出最为强韧的丝纤维;而通过精确控制纳米纤维素在细胞壁中的取向,树木能够有效顺应(对幼龄木而言)或抵抗(对成年木而言)环境风力并调控其生长方向;通过控制甲壳素微纤在虾、蟹壳中的三维层状堆叠(形成布利冈结构),虾、蟹能耐受超强外力的撞击而免遭伤害。
为了利用这些能从自然界中大量获得的生物大分子纳米组装体,最近三十年来,一系列“自上而下”和“自下而上”的方法已经被开发,从木材、虾蟹壳和蚕丝等生物材料中获得的生物大分子纳米微纤,已被制成各式各样的结构和功能材料。但遗憾的是,大多数材料的性能和功能都无法与自然界的生物材料相比。因此,深入解析生物大分子纳米微纤在自然界中的结构,并以此为灵感设计和构筑“结构-性能”优化的材料,对于生物大分子纳米微纤的高效利用尤其重要,这不仅可以大大提高生物大分子材料的使用性能,更能扩展其功能。
在这篇综述中,作者首先概述了在自然界中生物大分子纳米微纤的“普适性”材料构筑策略,包括纳米尺寸限制效应、微纤的高度取向以及微纤在二维和三维空间中的各项异性及周期性排列,并阐述了这些多尺度结构对于生物材料的力学和光学性质的贡献。随后介绍了最近生物大分子纳米微纤材料的仿生设计和制备策略:包括如何模仿生物材料设计原则以构筑纳米微纤在一维到三维空间中的有序组织,从而实现材料的力学增强及特殊光学性质。最后,作者在总结之前工作的基础上,提出如何利用生物材料组学方法(即整合先进表征技术、多尺度计算机模拟技术和实验仿生制备的系统研究方法)来更有效地利用、设计和构筑生物大分子纳米材料。
图一:自然界中生物大分子纳米微纤的“普适性”材料构筑策略
图二:利用生物材料组学方法设计和构筑生物大分子纳米材料
该论文中,凌盛杰为第一作者,上科大为第一完成单位。
原文链接:
https://www.nature.com/articles/natrevmats201816
免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn
中科院青岛能源所制备出高湿强、高韧性兼具紫外屏蔽功能的纤维素纳米纸
Nanollose:微生物纤维素可变废为宝成为环保织物
武汉大学蔡杰教授课题组与王彦峰教授课题组发现甲壳素的“绿色”再利用
中科院上海微系统所陶虎研究员和复旦大学附属华山医院毛颖教授合作在蚕丝蛋白颅骨固定系统研究中取得进展
北京化工大学杨卫民教授团队:聚合物熔体微分静电纺丝纳米纤维可控制备原理与方法研究北京市重点基金项目以优秀成绩通过验收
中科院大连化物所微流控技术可控制备多腔纤维生物材料研究获进展
关注高分子科学技术 👉
长按二维码关注
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。