查看原文
其他

中科院青岛能源所李朝旭研究员:用多糖微凝胶包裹的液态金属液滴作为可用于柔性导电器件的生物相容性墨水

Ericqiang 高分子科技 2020-09-12
点击上方“蓝字” 一键订阅

液态金属由于其低熔点(低于300℃)、高沸点(高于1000℃)、低粘度、高表面张力、高体积电导率(106 S·m-1)、广泛的金属溶解能力、多重响应性以及表面天然二维纳米氧化膜等优异且独特的性质,而在催化、电化学、生物医药、柔性电子等领域具有极大的应用潜力。近来,液态金属和PDMS等高分子材料制备的新型复合材料展示出高韧性、高导电率、缺口不敏感性以及自修复等优异性能,但液态金属与水凝胶的结合却少有报道,值得深入研究。

近期,中国科学院青岛生物能源与过程研究所李朝旭研究员在AdvancedFunctional Materials上发表了一篇题为“Liquid Metal Droplets Wrapped with Polysaccharide Microgel as Biocompatible Aqueous Ink for Flexible Conductive Devices”的研究论文。该论文采用超声技术将镓铟共晶(EGaIn)分散在低浓度海藻酸溶液中,制备出一种高导电率的纳米尺寸海藻酸微凝胶包裹的液态金属液滴的生物墨水。


图1. (A)海藻酸凝胶包裹EGaIn纳米液滴墨水的制备示意图;EGaIn液滴的SEM图像(B)和TEM图像(C);不同海藻酸浓度下纳米液滴壳壁厚度(D)和液滴直径(E)(比例尺为100 nm)。


如图1所示,海藻酸不仅通过羧基与金属液滴表面的Ga3+的相互作用促进EGaIn的粒径从400nm减小至100nm,并且与表面Ga3+产生螯合作用形成一层类似鸡蛋壳的坚固且不透氧气的纳米凝胶层。纯水中的液态金属纳米微粒仅能稳定存在6小时以内,而微凝胶层极大地提高了纳米液态金属胶体的稳定性,使其可在空气中稳定存在7天以上,并在氮气保护中稳定存在超过60天。此外,由于海藻酸层中富含羧基等极性基团,使得EGaIn液滴可以通过喷墨印刷、丝网印刷等方式附着在多种基底表面,并可通过“机械力烧结”恢复到接近EGaIn的电导率(4.8×105S·m-1)。而且由于液态金属液滴与海藻酸壳以及基底的强相互作用,使得液态金属墨水难以发生失水开裂。最后,海藻酸通过束缚有细胞毒性重金属Ga3+离子和自身极好的生物相容性,进一步提高了液态金属液滴的生物相容性。


图2. EGaIn液滴在空气中7天(A)和氮气中60天(B)的SEM图像;(C)氮气中不同储存时间的EGaIn液滴XRD图像;(D)EGaIn液滴在海藻酸、水、羧甲基纤维素、透明质酸、吉兰糖胶、壳聚糖超声后的胶体稳定性与化学稳定性;(E)EGaIn液滴有无海藻酸壳包裹的生物毒性。


图3. (A)不同基质上的图案化;(B)无裂纹涂层的SEM图像;(C)机械烧结原理示意图;(D)烧结后涂层的SEM图像;(E)不同机械烧结压力下涂层电导率以及不同粒径的临界烧结压力;(F)烧结后涂层导电稳定性。


液态金属液滴烧结后除了提高材料的电导率外,还使得材料可以通过电场加热脱水变形,并在70%的相对湿度下快速恢复。


图4.  A. EGaIn生物墨水(5μm)U型涂覆在纳米纤维素基底上(110μm);B. 焦耳热引发驱动器运动;C. 不同电压下的最大变形;EGaIn生物墨水涂覆的PU泡沫(D)以及机械烧结前(E,F)和烧结后(G)液态金属层在纤维支架上的图像;(H)EGaIn生物墨水涂覆PU泡沫相对电阻随压缩应变的变化;(I)EGaIn泡沫作为压力传感器;(J)压缩应力导致的孔变化


图5.  EGaIn泡沫用作运动传感器。(A,B)对腕部和头部运动的传感;(C)5×5的位置传感器;(D)位置传感器相对阻值的变化。


本文采用超声技术,方便的将镓铟共晶(EGaIn)分散在低浓度海藻酸溶液中,海藻酸不仅通过羧基与金属液滴表面的Ga3+的相互作用促进EGaIn粒子的纳米化,并且与表面Ga3+产生螯合作用形成一层类似鸡蛋壳的坚固且不透氧气的纳米凝胶层,大大提供了金属纳米液滴的分散稳定性,这种高导电率的纳米尺寸海藻酸微凝胶包裹的液态金属液滴可用于柔性导电器件的生物墨水使用。


论文链接:

https://doi.org/10.1002/adfm.201804197


来源:高分子凝胶与网络

免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn

相关进展哈佛大学锁志刚教授课题组报道可拉伸密封层:同时实现可拉伸,低韧性和低可透性
中科院宁波材料所陈涛研究员和张佳玮研究员在非对称仿生智能水凝胶驱动领域取得系列进展
哈佛大学锁志刚教授和Joost J. Vlassak 教授合作研制高度可拉伸、抗冻韧性水凝胶
日本北海道大学龚剑萍教授课题组:基于多重设计的在水下具有快速、可逆及强粘附的韧性水凝胶
新加坡科技与设计大学和耶路撒冷希伯来大学合作开发:3D打印可伸展、高分辨率、生物相容性的水凝胶
南开大学张拥军教授课题组在快速水凝胶传感器研究方面取得新进展
新加坡国立大学研发出能吸收空气中水分的水凝胶

关注高分子科学技术  👉


长按二维码关注

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

点击下方“阅读原文”查看更多


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存