广西大学孙建平/石绍宏 CEJ: 设计具有优异荧光性能和pH响应性的生物质碳量子点@聚乙烯醇薄膜用于智能检测
碳量子点(Carbon Quantum Dots, CQDs)是一类粒径在10 nm以内,具有良好荧光性能的“零维”碳纳米材料,因其优异的光学性质、良好的水溶性与生物相容性,被广泛应用于pH及金属离子探测、生物传感、荧光呈像等领域。然而,过去碳量子点的合成大多基于有毒的化工原料,并且由于聚集诱导猝灭现象的影响,使得碳量子点的应用和推广大受限制。
为提高碳量子点的应用和推广,本研究提出以天然木质纤维素为原料,通过N,Mg元素掺杂,水热法制备具备pH响应性的生物质基CQDs。并通过简单的溶液浇铸法制备了具有灵敏pH响应性的CQDs@PVA荧光薄膜。由于CQDs与PVA链间的氢键作用,使得CQDs在PVA基体中均匀分布,荧光量子产率从溶液态的2.78%增加到18.67%。合成的薄膜具有88%的高透光率,39.7 MPa的抗拉强度,453%的断裂伸长率。最后,基于该pH响应膜,合理设计了一种智能pH检测器,实时感知和检测人体运动过程中汗液pH值的变化。综上所述,本工作不仅为高稳定性强荧光材料的制备开辟了一条环境友好的途径,而且在可穿戴智能设备的精确传感与检测领域开辟了广阔的前景。
本文要点:
1. CQD的结构
通过FT-IR和XPS分析研究了CQD纳米颗粒的结构特征。CQD的电位示意图如图1a所示,其中多元素掺杂在CQD框架表面。为了实验证明这种可能的掺杂,木屑、木质纤维素和CQD纳米颗粒的FT-IR光谱如图1b所示。可见,CQDs光谱中官能团的特征吸收与木材和木质纤维素样品几乎相同。然而,与木材和木质纤维素的光谱相比,CQDs的光谱存在一些差异。如图1c所示,CQDs的XPS宽扫描光谱在284,399,531和1303 eV处有4个特征峰,可以分别归属于CQDs的C, N, O和Mg元素。插图显示了原子百分比,分别为C ~ 74.8%、N ~ 3.2%、O ~ 21.7%和Mg ~ 0.3%。这些成功的掺杂将进一步丰富CQDs框架的表面态,使其具有优异的发光性能。因此,通过对CQD纳米粒子的结构分析,充分证实Mg和N元素成功地掺杂在CQDs框架上。
2. CQDs的荧光特性
3. CQDs@PVA薄膜的形貌和荧光性质
上述工作为CQD纳米颗粒的结构和性质提供了一个全面的认识。然而,要实现理想的应用,仍有一个内在的不足需要克服,即CQDs在溶液态聚集引起的荧光猝灭。基于之前报道的工作,将CQDs封装到聚合物基体中是限制CQDs运动并使其均匀分散的有效方法。采用这种策略,CQDs@PVA薄膜成功制备,如图3a所示。显然,它在可见光下保持了很高的透明度。为了进行定量分析,在紫外可见波数(200 ~ 700 nm)下测定了纯PVA和CQDs@PVA薄膜的透过率。如图3b所示,在低波数区域(紫外光),CQDs@PVA膜的透过率略低于纯PVA。这主要是由于CQD纳米颗粒对紫外光的吸收作用,如图3d所示。相比之下,CQDs@PVA薄膜在高波数区(可见光)的透光率显著提高,达到88%左右,与纯PVA的透光率基本相同。这种高透光性能可能是由于CQD纳米颗粒在PVA基体中的均匀分布所致。图3c进一步观察了薄膜的横截面。表面光滑,厚度达180 μm。在高倍SEM图像中(图3d),几乎没有团聚的颗粒。为了更直观的观察,在图3e中检测到了C, N, O, Mg元素的EDS扫描。
4. CQDs@PVA薄膜组装可穿戴式pH检测器
原文链接:
https://doi.org/10.1016/j.cej.2022.136442
相关进展
南京林业大学周晓燕教授课题组:橙色荧光发射的碳量子点在伤口pH检测中的应用
高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。
点
这里“阅读原文”,查看更多